Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (10): 1740-1747.doi: 10.3724/SP.J.1006.2014.01740

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping of Minor QTLs for Rice Gelatinization Temperature Using Chromosome Segment Substitution Lines from Indica 9311 in the Japonica Background

LIU Xin-Yan1,2,ZHU Kong-Zhi1,ZHANG Chang-Quan1,HONG Ran1,SUN Peng1,TANG Su-Zhu1,GU Ming-Hong1,LIU Qiao-Quan1,*?   

  1. 1 Jiangsu Key Laboratory for Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; 2 College of Life Science, Nantong University, Nantong 226019, China
  • Received:2014-03-14 Revised:2014-07-06 Online:2014-10-12 Published:2014-07-25
  • Contact: 刘巧泉, E-mail: qqliu@yzu.edu.cn; Tel: 0514-87996648

Abstract:

Gelatinization temperature (GT), one of the determinants for rice cooking and eating quality, is controlled by not only a major gene but also several minor genes. Previously, we used the japonica rice cultivar Nipponbare as the recipient and the indica 9311 as the donor to develop a population containing 38 chromosome segment substitution lines (CSSLs), and genotyped them using a high-throughput re-sequencing strategy. In this study, this population and their parents were used to map the minor quantitative trait loci (QTLs) for rice gelatinization temperature. The GT of each line was measured and expressed as alkali spreading value (ASV) under two environments (Campus and Hangji) within two years (2010–2011). After compared with that of the receptor parent by t-test, the stable QTL was identified if there was a significant difference in both environments of the same year. Finally, four QTLs for gelatinization temperature were detected, named as qGT2-1, qGT7-1, qGT8-1, and qGT12-1 located on chromosome 2, 7, 8, and 12, respectively. Two of them, qGT7-1 and qGT12-1 were stable over two years and in two environments, with contributions ranging from 11.31% to 28.95%. Additive effect analysis showed that the effect value of four QTLs were negative. These results demonstrated that the four fragments from donor parent 9311 had negative effects for the alkali spreading value. Further comparison for starch fine structure between the receptor parent and N53 line showed that the decrease of A and B1 chains with short branch length might be the possible reason for increased GT. The results pave the way for the fine mapping and subsequent cloning of these QTLs and the molecular breeding for the improvement of rice quality.

Key words: Oryza sativa L, Chromosome segment substitution lines, Gelatinization temperature, Quantitative trait locus (QTL), Substitution mapping

[1]包劲松. 应用RVA测定米粉淀粉成糊温度. 中国水稻科学, 2007, 21: 543–546



Bao J S. Accurate measurement of pasting temperature of rice flour by a rapid visco-analyser. Chin J Rice Sci, 2007, 21: 543–546 (in Chinese with English abstract)



[2]Bhattacharya K R. Gelatinization temperature of rice starch and its determination. In: Brady N C, ed. Proceeding of the Workshop on Chemical Basis of Rice Grain Quality. Los Banos, Philippines: IRRI, 1979. pp 231–249



[3]Kudo M. Genetical and thremmatological studies of characters, physiological or ecological, in the hybrids between ecological rice groups. Bull Natl Inst Agric Sci Ser D, 1968, 19: 1–84



[4]He P, Li S G, Qian Q, Ma Y Q, Li J Z, Wang W M, Chen Y, Zhu L H. Genetic analysis of rice grain quality. Theor Appl Genet, 1999, 98: 502–508



[5]Lanceras J C, Huang Z L, Naivikul O, Vanavichit A, Ruanjaichon V, Tragoonrung S. Mapping of genes for cooking and eating qualities in Thai jasmine rice (KDML105). DNA Res, 2000, 7: 93–101



[6]严长杰, 徐辰武, 裔传灯, 梁国华, 朱立煌, 顾铭洪. 利用SSR标记定位水稻GT的QTLs. 遗传学报, 2001, 28: 1006-1011



Yan C J, XU C W, Yi C D, Liang G H, Zhu L H, Gu M H. Genetic analysis of gelatinization temperature in rice via microsatellite (SSR) markers. Acta Genet Sin, 2001, 28: 1006–1011 (in Chinese with English abstract)



[7]高振宇, 曾大力, 崔霞, 周奕华, 颜美仙, 黄大年, 李家洋, 钱前. 水稻稻米GT控制基因ALK的图位克隆及其序列分析. 中国科学(C辑), 2004, 33(6): 481–487



Gao Z Y, Zeng D L, Cui X, Zhou Y H, Yan M X, Huang D N, Li J Y, Qian Q. Map-based cloning of the ALK gene, which controls the gelatinization temperature in rice. Sci China (Ser C), 2004, 33: 481–487 (in Chinese with English abstract)



[8]张昌泉, 胡冰, 朱孔志, 张华, 冷亚麟, 汤述翥, 顾铭洪, 刘巧泉. 利用重测序的水稻染色体片段代换系定位控制稻米淀粉黏滞性谱QTL. 中国水稻科学, 2013, 27: 56–64



Zhang C Q, Hu B, Zhu K Z, Zhang H, Leng Y L, Tang S Z, Gu M H, Liu Q Q. Mapping of QTLs for rice RVA properties using high-throughput re-sequenced chromosome segment substitution lines. Chin J Rice Sci, 2013, 27: 56–64 (in Chinese with English abstract)



[9]Zhang H, Zhao Q, Sun Z Z, Zhang C Q, Feng Q, Tang S Z, Liang G H, Gu M H, Han B, Liu Q Q. Development and high-throughput genotyping of substitution lines carring the chromosome segments of indica 9311 in the background of japonica Nipponbare. J Genet Genomics, 2011, 38: 603–611



[10]Little R R, Hilder G B, Dawson E H. Differential effect of dilute alkali on 25 varieties of milled white rice. Cereal Chem, 1958, 35: 111–126



[11]Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147



[12]何风华, 席章营, 瑞珍, Akshay T, 张桂权. 利用高代回交和分子标记辅助选择建立水稻单片段代换系. 遗传学报, 2005, 32: 825–831



He F H, Xi Z Y, Zeng R Z, Akshay T, Zhang G Q. Developing single segment substitution lines (SSSLs) in rice (Oryza sativa L.) using advanced backcrosses and MAS. Acta Genet Sin, 2005, 32: 825–831 (in Chinese with English abstract)



[13]Zhu L J, Liu Q Q, Sang Y J, Gu M H, Shi Y C. Underlying reasons for waxy rice flours having different pasting properties. Food Chem, 2010, 120: 94–100



[14]池晓菲, 吴殿星, 楼向阳, 夏英武, 舒庆尧. 五种禾谷类作物淀粉糊化特性的比较研究. 作物学报, 2003, 29: 300–304



Chi X F, Wu D X, Lou X Y, Xia Y W, Shu Q Y. Comparative studies on the starch gelatinization characteristics of five cereal crops. Acta Agron Sin, 2003, 29: 300–304 (in Chinese with English abstract)



[15]成明华, 关东胜, 张慧敏, 李里特, 沈欣. 10种稻米的品质分析. 粮油食品科技, 2001, 9(6): 13–16



Cheng M H, Guang D S, Zhang H M, Li L T, Shen X. Quality analysis of ten varieties of rice. Sci Technol Cereals Oils Foods, 2001, 9(6): 13–16 (in Chinese with English abstract)



[16]李欣, 汤述翥, 陈宗祥, 顾铭洪. 粳稻米GT的遗传研究. 江苏农学院学报, 1995, 16(1): 15–20



Li X, Tang S Z, Chen Z X, Gu M H. Genetic studies of gelatinization temperature in japonica rice. J Jiangsu Agric Coll, 1995, 16(1): 15–20 (in Chinese)



[17]徐辰武, 莫惠栋, 张爱红, 朱庆森. 籼-粳杂种稻米品质性状的遗传控制. 遗传学报, 1995, 22: 192–198



Xu C W, Mo H D, Zhang A H, Zhu Q S. Genetic control of quality traits of rice grains in indica-japoniva hybrids. Acta Genet Sin, 1995, 22: 192–198 (in Chinese with English abstract)



[18]Umemoto T, Yano M, Satoh H, Shomura A, Nakamura. Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theor Appl Genet, 2002, 104: 1–8



[19]Gao Z Y, Zeng D L, Cheng F M, Tian Z X, Guo L B, Su Y, Yan M X, Jiang H, Dong G J, Huang Y C, Han B, Li J Y, Qian Q. ALK, the key gene for gelatinization temperature, is a modifier gene for gel consistency in rice. J Integr Plant Biol, 2011, 53: 756–765



[20]Govindaraj P, Vinod K K, Arumugachamy S, Maheswaran M. Analysing genetic control of cooked grain traits and gelatinization temperature in a double haploid population of rice by quantitative trait loci mapping. Euphytica, 2009, 166: 165–176



[21]Fan C C, Yu X Q, Xing Y Z, Xu C G, Luo L J, Zhang Q F. The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population. Theor Appl Genet, 2005, 110: 1445–1452



[22]Tian Z X, Qian Q, Liu Q Q, Yan M X, Liu X F, Yan C J, Liu G F, Gao Z Y, Tang S Z, Zeng D L, Wang Y H, Yu J M, Gu M H, Li J Y. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci USA, 2009, 106: 21760–21765



[23]Radhika Reddy K, Subramanian R, Zakiuddin A S, Bhattacharya K R. Viscoelastic properties of rice-flour pastes and their relationship to amylose content and rice quality. Cereal Chem, 1994, 71: 548–552



[24]Bao J S, Zheng X W, Xia Y W, He P, Shu Q Y, Lu X, Chen Y, Zhu L H. QTL mapping for the paste viscosity characteristics in rice (Oryza sativa L.). Theor Appl Genet, 2000, 100: 280–284



[25]Bao J S, Xiao P, Hiratsuka M, Sun M, Umemoto T. Granule-bound SSIIa protein content and its relationship with amylopectin structure and gelatinization temperature of rice starch. Starch, 2009, 61: 431–437

[1] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[2] LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401.
[3] WANG Xiao-Lei, LI Wei-Xing, ZENG Bo-Hong, SUN Xiao-Tang, OU-YANG Lin-Juan, CHEN Xiao-Rong, HE Hao-Hua, ZHU Chang-Lan. QTL detection and stability analysis of rice grain shape and thousand-grain weight based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2020, 46(10): 1517-1525.
[4] WANG Da-Chuan,WANG Hui,MA Fu-Ying,DU Jie,ZHANG Jia-Yu,XU Guang-Yi,HE Guang-Hua,LI Yun-Feng,LING Ying-Hua,ZHAO Fang-Ming. Identification of rice chromosome segment substitution Line Z747 with increased grain number and QTL mapping for related traits [J]. Acta Agronomica Sinica, 2020, 46(01): 140-146.
[5] Zhi-Jun TONG,Yi-Han ZHANG,Xue-Jun CHEN,Jian-Min ZENG,Dun-Huang FANG,Bing-Guang XIAO. Mapping of quantitative trait loci conferring resistance to brown spot in cigar tobacco cultivar Beinhart1000-1 [J]. Acta Agronomica Sinica, 2019, 45(3): 477-482.
[6] Guo-Qing CUI,Shi-Ming WANG,Fu-Ying MA,Hui WANG,Chao-Zhong XIANG,Yun-Feng LI,Guang-Hua HE,Chang-Wei ZHANG,Zheng-Lin YANG,Ying-Hua LING,Fang-Ming ZHAO. Identification of Rice Chromosome Segment Substitution Line Z1377 with Increased Plant Height and QTL Mapping for Agronomic Important Traits [J]. Acta Agronomica Sinica, 2018, 44(10): 1477-1484.
[7] ZHANG Xiao-Qiong, WANG Xiao-Wen, TIAN Wei-Jiang, ZHANG Xiao-Bo, Sun Ying, LI Yang-Yang, Xie Jia, HE Guang-Hua,SANG Xian-Chun. LAZY1 Regulates the Development of Rice Leaf Angle through BR Pathway [J]. Acta Agron Sin, 2017, 43(12): 1767-1773.
[8] ZHOU Yong,TAO Ya-Jun,YAO Rui,LI Chang,TAN Wen-Chen,YI Chuan-Deng,GONG Zhi-Yun, LIANG Guo-Hua*. QTL Mapping for Leaf Morphological Traits of Rice Using Chromosome Segment Substitution Lines [J]. Acta Agron Sin, 2017, 43(11): 1650-1657.
[9] ZHONG Jie,WEN Pei-Zheng,SUN Zhi-Guang,XIAO Shi-Zhuo,HU Jin-Long,ZHANG Le,JIANG Ling,CHENG Xia-Nian,LIU Yu-Qiang,WAN Jian-Min. Identification of QTLs Conferring Small Brown Planthopper Resistance in Rice (Oryza sativa L.) Using MR1523/Suyunuo F2:3 Population [J]. Acta Agron Sin, 2017, 43(11): 1596-1602.
[10] GENG Qing-He,WANG Lan-Fen,WU Jing,WANG Shu-Min. QTL Mapping for Seed Size and Shape in Common Bean [J]. Acta Agron Sin, 2017, 43(08): 1149-1160.
[11] ZHOU Ke,LI Yan,WANG Shi-Ming,CUI Guo-Qing,YANG Zheng-Lin,HE Guang-Hua,LING Ying-Hua,ZHAO Fang-Ming. Identification of Rice Chromosome Segment Substitution Line Z519 with Purple Sheath and Candidate Gene Analysis of PSH1 [J]. Acta Agron Sin, 2017, 43(07): 974-982.
[12] SHE Dong, LIU Qiang-Ming, LI Da-Lu, LIANG Yin-Feng, LIU Er-Bao,DANG Xiao-Jing,HONG De-Lin. QTL Mapping of Seven Panicle Traits in Rice (Oryza sativa L.) Using Chromosome Segment [J]. Acta Agron Sin, 2017, 43(05): 658-668.
[13] XIAO Yan-Hua**, CHEN Xin-Long**, DU Dan, XING Ya-Di, ZHANG Tian-Quan, ZHU Mao-Di,LIU Ming-Ming,ZHU Xiao-Yan, SANG Xian-Chun,HE Guang-Hua*. Identification and Gene Mapping of Starch Accumulation and Early Senescence Leaf Mutant esl9 in Rice [J]. Acta Agron Sin, 2017, 43(04): 473-482.
[14] LI Chuang, LIU Cheng-Chen, ZHANG Chang-Quan, ZHU Ji-Hui, XU Xiao-Ying, ZHAO Fu-Wei,HUANG Shao-Wen, JIN Yin-Gen,LIU Qiao-Quan. Genetic Diversity of ALK Gene and Its Association with Grain Gelatinization Temperature in Currently Cultivated Rice Landraces from Hani’s Terraced Fields in Yunnan Province [J]. Acta Agron Sin, 2017, 43(03): 343-353.
[15] BAI Na,LI Yong-Xiang*,JIAO Fu-Chao,CHEN Lin,LI Chun-Hui,ZHANG Deng-Feng,SONG Yan-Chun,WANG Tian-Yu,LI Yu,SHI Yun-Su*. Fine Mapping andGenetic Effect Analysis of qKRN5.04, a Major QTL Associated with Kernel Row Number [J]. Acta Agron Sin, 2017, 43(01): 63-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!