Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (01): 154-159.doi: 10.3724/SP.J.1006.2015.00154
• RESEARCH NOTES • Previous Articles Next Articles
ZHANG Xing-Hua,GAO Jie,DU Wei-Li,ZHANG Ren-He*,XUE Ji-Quan
[1]张仁和, 杜伟莉, 郭东伟, 张爱瑛, 胡富亮, 李凤艳, 薛吉全. 陕西省不同年代玉米品种产量和氮效率性状的变化. 作物学报, 2014, 40: 915–923Zhang R H, Du W L, Guo D W, Zhang A Y, Hu F L, Li F Y, Xue J Q. Changes of grain yield and nitrogen use efficiency of maize hybrids released in different eras in Shaanxi Province. Acta Agron Sin, 2014, 40: 915–923 (in Chinese with English abstract).[2]李少昆, 王崇桃. 玉米生产技术创新与扩散. 北京: 科学出版社, 2010. pp 1–32Li S K, Wang C T. Innovation and Diffusion of Corn Production Technology. Beijing: Science Press, 2010. pp 1–32 (in Chinese)[3]Yordanov I, Velikova T, Tsonev T. Plant response to drought, acclimation and stress tolerance. Photosynthetica, 2000, 38: 171–186[4]Eberhard S, Finazzi G, Wollman A. The dynamics of photosynthesis. Annu Rev Genet, 2008, 42: 463–515[5]Pinheiro C, Chaves M M. Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot, 2011, 62: 869–882[6]Pena-Rojas K, Aranda X, Fleck I. Stomatal limitation to CO2 assimilation and down-regulation of photosynthesis in Quercus ilex resprouts in response to slowly imposed drought. Tree Physiol, 2004, 24: 813–822[7]Bu L D, Zhang R H, Chang Y, Xue J Q, Han M M. Responses of water stress to photosynthetic characteristics of the maize leaf in the seeding. Acta Ecol Sin, 2010, 30: 1184–1192 [8]Nielsen D C, Vigil M F, Benjamin J G. The variable response of dryland corn yield to soil water content at planting. Agric Water Manage, 2009, 96: 330–336[9]Efeoglu B, Ekmekci Y, Cicek N. Physiological responses of three maize cultivars to drought stress and recovery. South Afr J Bot, 2009, 75: 34–42[10]Parry M A J, Andralojc P J, Khan S, Lea P J, Keys A J. Rubisco activity: effects of drought stress. Ann Bot, 2002,89: 833–839[11]Galmés J, Ribas-Carbó M, Medrano H, Flexas J. Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress. Environ Exp Bot, 2011, 62: 653–665[12]Massacci A, Nabiev S M, Pietrosanti L, Nematov S K, Chernikova T N, Thor K, Leipner J. Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem, 2008, 46: 189–195[13]Demmig-Adams B, Adams W W, Baker D H, Logan B A, Bowling D R, Verhoreven A S. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant, 1996, 98: 253–264[14]Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol, 2003, 30: 239–264[15]Strasser R J, Srivastava A, Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol, 1995, 61: 32–42[16]Strasser R J. Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth Res, 1997, 52: 147–155[17]Baker N R, Rosenqvist E. Application of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot, 2004, 55: 1607–1621[18]张子山, 李耕, 高辉远, 刘鹏, 杨程, 孟祥龙, 孟庆伟. 玉米持绿与早衰品种叶片衰老过程中光化学活性的变化. 作物学报, 2013, 39: 93–100Zhang Z S, Li G, Gao H Y, Liu P, Yang C, Meng X L, Meng Q F. Characterization of photosynthetic performance during senescence in stay-green and quick-leaf-senescence Zea mays L. inbred lines. Acta Agron Sin, 2013, 39: 93–100 (in Chinese with English abstract)[19]Oukarroum A, Schansker G, Strasser R J. Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol Plant, 2009, 137: 188–19[20]Miyashita K, Tanakamaru S, Maitani T, Kimura K. Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environ Exp Bot, 2005, 53: 205–214[21]Gomes G, Luz C D, Santos R D, Batitucci P, Silva D M, Falqueto A R. Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. Sci Hortic, 2012, 142: 49–56[22]Campos H, Trejo C, Valdiva P, Nava G, Martinez C, Ortega C. Stomatal and non-stomatal limitations of bell pepper plants under water stress and re-watering: Delayed restoration of growth and photosynthesis during recovery. Environ Exp Bot, 2014, 98: 56–64[23]Zhang Z S, Li P, Gao H Y, Zhang L T, Yang C, Liu P. Characterization of photosynthetic performance during senescence in stay-green and quick-leaf-senescence Zea mays L. inbred lines. PLoS One, 2012, 8: 1–8[24]胡富亮, 郭德林, 高杰, 路海东, 张仁和, 薛吉全. 种植密度对春玉米干物质、氮素积累与转运及产量的影响. 西北农业学报, 2013, 20: 60–66Hu F L, Guo D L, Gao J, Lu H D, Zhang R H, Xue J Q. Effects of planting densities on dry matter and nitrogen accumulation and grain yield in spring maize. Acta Agric Boreali-Occident Sin, 2013, 20: 60–66 (in Chinese with English abstract)[25]Schansker G, Tóth S Z, Strasser R J. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim Biophys Acta, 2005, 1706: 250–261[26]Strasser R J, Tsimilli-Michael M, Qiang S, Goltsev V. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim Biophys Acta, 2010, 1797: 1313–1326[27]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol, 1982, 33: 317–345[28]Lawlor D W, Tezara W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot, 2009, 103: 561–579[29]Mehta P, Allakverdiev S I, Jajoo A. Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves. Photosynth Res, 2010, 52: 147–155[30]Oukarroum A, El Madidi S, Schansker G, Strasser R J. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ Exp Bot, 2007, 60: 438–446 |
[1] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[2] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[3] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[4] | XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536. |
[5] | SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070. |
[6] | SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297. |
[7] | WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198. |
[8] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[9] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[10] | YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974. |
[11] | XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579. |
[12] | DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703. |
[13] | SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738. |
[14] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[15] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
|