Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (09): 1352-1362.doi: 10.3724/SP.J.1006.2016.01352

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Grain Quality and Its Response to Nitrogen Fertilizer in Mid-season Indica Rice Varieties Planted in Different Decades from 1950s to 2010s

TAO Jin,QIAN Xi-Yang,JU Cheng-Xin,LIU Li-Jun,ZHANG Hao,GU Jun-Fei,WANG Zhi-Qin,YANG Jian-Chang*   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
  • Received:2016-02-22 Revised:2016-05-09 Online:2016-09-12 Published:2016-05-30
  • Contact: 杨建昌, E-mail: jcyang@yzu.edu.cn, Tel: 0514-87979317 E-mail:782916363@qq.com
  • Supported by:

    The study was supported by the National Natural Science Foundation of China (31271641, 31461143015,31471438), the National Key Technology Support Program of China (2014AA10A605, 2013BAD07B09), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Innovation Research Program for Graduate Students for Higher Education of Jiangsu Province (KYZZ15_0364), and the Top Talent Supporting Program of Yangzhou University (2015-01).

Abstract:

Understanding the changes in grain quality and its response to nitrogen (N) fertilizer during the improvement of crop varieties has great significance in both crop breeding and cultivation. This study aimed to investigate the changes in grain yield and quality during the improvement of mid-season indica rice varieties and the effect of N fertilizer application on the quality. Twelve representative mid-season indica rice varieties (including hybrid combinations) grown in Jiangsu Province during the last 70 years were used with three N application treatments: 0 kg N ha–1 (zero N, 0N), 210 kg N ha–1 (medium amount of N, MN), and 300 kg N ha–1 (high amount of N, HN). These varieties were divided into four groups, including 1940-1950s, 1960-1970s, 1980-1990s, and 2000-2010s (super rice), according to their application times. With the variety improvement, grain yield was significantly increased, and the head rice percentage, chalkiness, ratio of length to width, amylose content, gel consistency, protein components, and rapid viscosity analyzer (RVA) pasting properties were all significantly improved. However, chalkiness for modern varieties was still high. Grain yield was the highest in HN for super rice varieties, and in MN, for other varieties or no significant difference between MN and HN. With the increase in N application, protein content and chalkiness increased, taste quality decreased which was evidenced by the reduction in breakdown values and the increase in setback values. The contents of K, P, S, Ca, and Mg in the head rice decreased in HN compared with those in 0N or MN. The results demonstrate that the improvement of mid-season indica rice varieties markedly improves both grain yield and quality. Generally, increasing N fertilizer application especially up to the HN level could decrease rice quality. How to increase both grain yield and quality through optimizing N management is still a question to be studied.

Key words: Mid-season indica rice, Variety improvement, Nitrogen fertilizer, Grain yield, Rice quality

[1] 杨建昌, 王朋, 刘立军, 王志琴, 朱庆森. 中籼水稻品种产量与株型演进特征研究. 作物学报, 2006, 32: 949–955
Yang J C, Wang P, Liu L J, Wang Z Q, Zhu Q S. Evolution characteristics of grain yield and plant type for mid-season indica rice cultivars. Acta Agron Sin, 2006, 32: 949–955(in Chinese with English abstract)
[2] 中国水稻研究所. 中国水稻种植区划. 杭州: 浙江科技出版社, 1988. pp 1–47
China National Rice Research Institute. Rice Cropping Regionalization in China. Hangzhou: Zhejiang Scientific & Technical Publishers, 1988. pp 1–47 (in Chinese)
[3] 郑景生, 黄育民. 中国稻作超高产的追求与实践. 分子植物育种, 2003, 1: 585–596
Zheng J S, Huang Y M. Thrust and practice of super high yielding rice production in China. Mol Plant Breed, 2003, 1: 585–596 (in Chinese with English abstract)
[4] Cheng S, Zhuang J, Fan Y, Du J, Cao L. Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot, 2007, 100: 959–966
[5] Fitter A. Characteristics and functions of root systems. In: Waisel Y, Eshel A, Kafkafi U, eds. Plant Roots, the Hidden Half. New York: Marcel Dekker Inc, 2002. pp 15–32
[6] 吴伟明, 宋祥甫, 孙宗修, 于永红, 邹国燕. 不同类型水稻的根系分布特征比较. 中国水稻科学, 2001, 15: 276–280
Wu M W, Song X F, Sun Z X, Yu Y H, Zou G Y. Comparison of root distribution between different type rice. Chin J Rice Sci, 2001, 15: 276–280 (in Chinese with English abstract)
[7] 董桂春, 王余龙, 王坚刚, 单玉华, 马爱京, 杨洪建, 张传胜, 蔡惠荣. 不同类型水稻品种间根系性状的差异. 作物学报, 2002, 28: 749–755
Dong G C, Wang Y L , Wang J G, Shan Y H, Ma A J, Yang H J, Zhang C S, Cai H R. Study on the differences of root traits between various types of varieties in rice (Oryza sativa L.). Acta Agron Sin,2002, 28: 749–755 (in Chinese with English abstract)
[8] 朱德峰, 林贤青, 曹卫星. 超高产水稻品种的根系分布特点. 南京农业大学学报, 2000, 23(4): 5–8
Zhu D F, Ling X Q, Cao W X. Characteristics of root distribution of super high-yielding rice varieties. J Nanjing Agric Univ, 2000, 23(4): 5–8 (in Chinese with English abstract)
[9] 张耗, 谈桂露, 孙小淋, 刘立军, 杨建昌. 江苏省中籼水稻品种演进过程中米质的变化. 作物学报, 2009, 35: 2037–2044
Zhang H, Tan G L, Sun X L, Liu L J, Yang J C. Changes in grain quality during the evolution of mid-season indica rice cultivars in Jiangsu province. Acta Agron Sin, 2009, 35: 2037–2044 (in Chinese with English abstract)
[10] Cassman K G, Dobermann A, Wallers D T, Yang H S. Meeting cereal demand while protecting natural resources and improveing environmental quality. Annu Rev Environ Resour, 2003, 28: 315–358
[11] Peng S B, Buresh R J, Huang J L, Zhong X H, Zou Y B, Yang J C, Wang G H, Liu Y Y, Hu R F, Tang Q Y, Cui K H, Zhang F S, Dobermann A. Improving nitrogen fertilization in rice by site-specific N management:a review. Agron Sustain Dev, 2010, 30: 649–656
[12] Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Prod Sci, 2009, 12: 3–8
[13] Ju C X, Buresh R J, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res, 2015, 175: 47–55
[14] 国家质量技术监督局. 中华人民共和国国家标准. 优质稻谷. GB/T17891-1999, 1999
Supervising Department of Quality and Technology of China. The National Standard of the People’s Republic of China. Good Quality of Rice Grain. GB/T17891-1999, 1999 (in Chinese)
[15] 中华人民共和国农业部. 米质测定方法. NY147-88, 1988
Ministry of Agriculture, the People’s Republic of China. Good Quality and Edible Rice Grains. NY147-88, 1988 (in Chinese)
[16] 陈毓荃. 生物化学研究技术. 北京: 中国农业出版社, 1995. pp 196–197
Chen Y Q. Biochemical Research Technology. Beijing:China Agriculture Press, 1995. pp 196–197 (in Chinese)
[17] 陈因.现代植物生理学实验指南.北京:科学出版社, pp 1999.143–144
Chen Y. Experimental guide of modern plant physiology. Beijing: Science Press, 1999. pp 143–144(in Chinese)
[18] Zhang Q F. Strategies for developing green super rice. Proc Natl Acad Sci USA, 2007, 104: 16402–16409
[19] Gu J F, Chen J, Chen L, Wang Z Q, Zhang H, Yang J C.Grain quality changes and responses to nitrogen fertilizer of japonica rice cultivars released in the Yangtze river basin from the 1950s to 2000s.Crop J,2015, 3: 285–297
[20]Fitzgerald M A, Mccouch S R, Hall R D. Not just a grain of rice: the quest for quality. Trends Plant Sci, 2009,14: 133–139
[21]隋炯明, 李欣, 严松, 严长杰, 张蓉, 汤述翥, 陆驹飞, 陈宗祥, 顾铭洪. 稻米淀粉RVA谱特征与品质性状相关性研究. 中国农业科学, 2005, 38: 657–663
Sui J M, Li X, Yang S, Yang C J, Zhang R, Tang S Z, Lu J F, Chen Z X, Gu M H. Studies on the rice RVA profile characteristics and its correlation with the quality. Sci Agric Sin, 2005, 38: 657–663(in Chinese with English abstract)
[22] 舒庆尧, 吴殿星, 夏英武, 高明尉. 稻米淀粉RVA谱特征与食用品质的关系. 中国农业科学, 1998, 31(3): 1–4
Shu Q Y, Wu D X, Xiao Y W, Gao M W. Relationship between RVA profile character and eating quality in Oryza sativa L. Sci Agric Sin, 1998, 31(3): 25–29 (in Chinese with English abstract)
[23] 李欣, 张蓉, 隋炯明, 梁国华, 沈新平, 严长杰, 顾世梁, 顾铭洪. 稻米淀粉粘滞性谱特征的表现及其遗传. 中国水稻科学, 2004, 18: 384–390
Li X, Zhang R, Sui J M, Liang G H, Shen X P, Yan C J, Gu S L, Gu M H. Performance and inheritance of rice starch viscosity (RVA profile) characteristics. Chin J Rice Sci, 2004, 18: 384–390 (in Chinese with English abstract)
[24] 黄发松, 孙宗修, 胡培松, 唐绍清. 食用稻米品质形成研究的现状与展望. 中国水稻科学, 1988, 12: 172–176
Huang F S, Sun Z X, Hu P S, Tang S Q. Present situations and prospects for the research on rice grain quality forming. Chin J Rice Sci, 1988, 12: 172–176 (in Chinese with English abstract)
[25]符文英, 陈俊. 稻米营养品质研究综述. 海南大学学报(自然科学版), 1997, 15(1): 67–70
Fu W Y, Chen J. Summary of research on rice nutritional quality. Nat Sci JHainan Univ (Nat Sci Edn), 1997, 15(1): 67–70(in Chinese)
[26] 李欣, 莫惠栋, 王安民, 徐辰武, 朱毅华, 于恒秀. 粳型杂种稻米品质性状的遗传表达. 中国水稻科学, 1999, 13: 197–204
Li X, Mo H D, Wang A M, Xu C W, Zhu Y H, Yu H X. Genetic expression for quality traits of rice grain in japonica hybrids. Chin J Rice Sci, 1999, 13: 197–204 (in Chinese with English abstract)
[27] 王丹英, 章秀福, 朱智伟, 陈能, 闵捷, 姚青, 严建立, 廖西元.食用稻米品质性状间的相关性分析. 作物学报, 2005, 31: 1086–1091
Wang D Y, Zhang X F, Zhu Z W, Chen N, Min J, Yao Q, Yan J L, Liao X Y. Correlation analysis of rice grain quality characteristics. Acta Agron Sin, 2005, 31: 1086–1091 (in Chinese with English abstract)
[28] 徐正进, 陈温福, 马殿荣, 吕英娜, 周淑清, 刘丽霞.稻谷粒形与稻米主要品质性状的关系. 作物学报, 2004, 30: 894–900
Xu Z J, Chen W F, Ma D R, Lü Y N, Zhou S Q, Liu L X. Correlations between rice grain shapes and main qualitative characteristics. Acta Agron Sin, 2004, 30: 894–900 (in Chinese with English abstract)
[29] 赵宁春, 张其芳, 程方民, 周伟军. 氮、磷、锌营养对水稻籽粒植酸含量的影响及与几种矿质元素间的相关性. 中国水稻科学, 2007, 21: 158–190
Zhao N C, Zhang Q F, Cheng F M, Zhou W J.Effects of nitrogen, phosphorus and zinc supply levels on grain phytic acid content and its correlation with several mineral nutrients in rice grains. Chin J Rice Sci, 2007, 21: 158–190(in Chinese with English abstract)
[30] 张睿, 郭月霞, 南春芹. 不同施肥水平下小麦籽粒中部分微量元素含量的研究. 西北植物学报, 2004, 24: 125–129
Zhang R, Guo Y X, Nan C Q.Study on trace elements of wheat grain in different fertilizer treatments. Acta Bot Boreal-Occident Sin, 2004, 24: 125–129 (in Chinese with English abstract)
[31] Hussain A A, Maurya D M, Vaish C P. Study on quality status of indigenous upland rice (Oryza sativa L.). Indian J Genet, 1987, 47: 145–152
[32] 李贤勇, 王天凯, 王楚桃. 稻米蒸煮品质与营养品质的相关性分析. 西南农业学报, 2001, 14(3): 21–24
Li X Y, Wang T K, Wang C T. Analysis of correlation between quality characters of cooking and nutrition. Southwest China J Agric Sci, 2001, 14(3): 21–24 (in Chinese with English abstract)
[33] Huang L F, Yu J, Yang J, Zhang R, Bai Y C, Sun C M, Zhuang H Y. Relationships between yield, quality and nitrogen uptake and utilization of organically grown rice varieties. Pedosphere, 2016, 26: 85–97

[1] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[2] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[3] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[4] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[5] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[6] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[7] ZHANG Jun, ZHOU Dong-Dong, XU Ke, LI Bi-Zhong, LIU Zhong-Hong, ZHOU Nian-Bing, FANG Shu-Liang, ZHANG Yong-Jin, TANG Jie, AN Li-Zheng. Nitrogen fertilizer reduction and precise application model on mechanical transplanting japonica rice with good taste quality under straw returning in Huaibei Area [J]. Acta Agronomica Sinica, 2022, 48(2): 410-422.
[8] XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477.
[9] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[10] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[11] ZHANG Xue-Lin, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, ZHOU Ya-Nan, HAO Xiao-Feng, YANG Qing-Hua. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize [J]. Acta Agronomica Sinica, 2021, 47(8): 1603-1615.
[12] KE Jian, CHEN Ting-Ting, XU Hao-Cong, ZHU Tie-Zhong, WU Han, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Effects of different application methods of controlled-release nitrogen fertilizer on grain yield and nitrogen utilization of indica-japonica hybrid rice in pot-seedling mechanically transplanted [J]. Acta Agronomica Sinica, 2021, 47(7): 1372-1382.
[13] ZHAO Jie, LI Shao-Ping, CHENG Shuang, TIAN Jin-Yu, XING Zhi-Peng, TAO Yu, ZHOU Lei, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, GAO Hui, WEI Hai-Yan, ZHANG Hong-Cheng. Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stage on yield and quality of dry direct seeding rice under “solo-stalk” cultivation mode [J]. Acta Agronomica Sinica, 2021, 47(6): 1162-1174.
[14] DANG Ke, GONG Xiang-Wei, LYU Si-Ming, ZHAO Guan, TIAN Li-Xin, JIN Fei, YANG Pu, FENG Bai-Li, GAO Xiao-Li. Effects of nitrogen application rate on photosynthetic characteristics and yield of mung bean under the proso millet and mung bean intercropping [J]. Acta Agronomica Sinica, 2021, 47(6): 1175-1187.
[15] LIU Qiu-Yuan, ZHOU Lei, TIAN Jin-Yu, CHENG Shuang, TAO Yu, XING Zhi-Peng, LIU Guo-Dong, WEI Hai-Yan, ZHANG Hong-Cheng. Relationships among grain yield, rice quality and nitrogen uptake of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(5): 904-914.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!