Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (6): 824-835.doi: 10.3724/SP.J.1006.2018.00824
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
Hua-Ying MAO,Feng LIU,Wei-Hua SU,Ning HUANG,Hui LING,Xu ZHANG,Wen-Ju WANG,Cong-Na LI,Han-Chen TANG,Ya-Chun SU,You-Xiong QUE()
[1] |
Ghosh R, Bankaitis V A . Phosphatidylinositol transfer proteins: negotiating the regulatory interface between lipid metabolism and lipid signaling in diverse cellular processes. Biofactors, 2011,37:290-308
doi: 10.1002/biof.180 pmid: 21915936 |
[2] |
Muellerroeber B, Pical C . Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol, 2002,130:22-46
doi: 10.1104/pp.004770 |
[3] |
Balla T . Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev, 2013,93:1019-1137
doi: 10.1152/physrev.00028.2012 |
[4] |
Phillips S E, Vincent P, Rizzieri K E, Schaaf G, Bankaitis V A, Gaucher E A . The diverse biological functions of phosphatidylinositol transfer proteins in eukaryotes. Crit Rev Biochem Mol Biol, 2006,41:21-49
doi: 10.1080/10409230500519573 |
[5] |
Aitken J F, van Heusden G P, Temkin M, Dowhan W . The gene encoding the phosphatidylinositol transfer protein is essential for cell growth. J Biol Chem, 1990,265:4711-4717
doi: 10.1016/0005-2728(90)90016-W pmid: 2407740 |
[6] |
Kearns M A, Monks D E, Fang M, Rivas M P, Courtney P D, Chen J, Prestwich G D, Theibert A B, Dewey R E, Bankaitis V A . Novel developmentally regulated phosphoinositide binding proteins from soybean whose expression bypasses the requirement for an essential phosphatidylinositol transfer protein in yeast. EMBO J, 1998,17:4004-4017
doi: 10.1093/emboj/17.14.4004 pmid: 9670016 |
[7] |
Peterman T K, Ohol Y M, Mcreynolds L J, Luna E J . Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant Physiol, 2004,136:3080-3094
doi: 10.1104/pp.104.045369 pmid: 15466235 |
[8] |
Peterman T K, Sequeira A S, Samia J A, Lunde E E . Molecular cloning and characterization of patellin1, a novel sec14-related protein, from zucchini ( Cucurbita pepo). J Plant Physiol, 2006,163:1150-1158
doi: 10.1016/j.jplph.2006.01.009 pmid: 16542754 |
[9] |
Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, Allen N, Bibikova T N, Gilroy S, Bankaitis V A . A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J Cell Biol, 2005,168:801-812
doi: 10.1083/jcb.200412074 pmid: 2171805 |
[10] |
Routt S M, Bankaitis V A . Biological functions of phosphatidylinositol transfer proteins. Biochem Cell Biol, 2004,82:254-262
doi: 10.1139/o03-089 pmid: 15052341 |
[11] | Kiba A, Nakano M, Vincent-Pope P, Takahashi H, Sawasaki T, Endo Y, Ohnishi K, Yoshioka H, Hikichi Y . A novel Sec14 phospholipid transfer protein from Nicotiana benthamiana is up-regulated in response to Ralstonia solanacearum infection, pathogen associated molecular patterns and effector molecules and involved in plant immunity. J Plant Physiol, 2012,169:1017-1022 |
[12] | Kiba A, Galis I, Hojo Y, Ohnishi K, Yoshioka H, Hikichi Y . SEC14 phospholipid transfer protein is involved in lipid signaling-mediated plant immune responses in Nicotiana benthamiana. PLoS One, 2014,9:e98150 |
[13] |
Kiełbowiczmatuk A, Banachowicz E, Turskatarska A, Rey P, Rorat T . Expression and characterization of a barley phosphatidylinositol transfer protein structurally homologous to the yeast Sec14p protein. Plant Sci, 2016,246:98-111
doi: 10.1016/j.plantsci.2016.02.014 pmid: 26993240 |
[14] | 苏世超, 唐益苗, 徐磊, 王伟伟, 高世庆, 马锦绣, 孙辉, 王永波, 乔亚科, 赵昌平 . 普通小麦 TaSEC14p-5 基因的克隆及表达分析. 农业生物技术学报, 2016,24:1129-1137 |
Su S C, Tang Y M, Xu L, Wang W W, Gao S Q, Ma J X, Sun H, Wang Y B, Qiao Y K, Zhao C P . Cloning and expression analysis of TaSEC14p-5 gene from wheat( Triticum aestivum). J Agric Biotechnol, 2016,24:1129-1137 (in Chinese with English abstract) | |
[15] |
Wang X, Shan X, Xue C, Wu Y, Su S, Li S, Liu H, Jiang Y, Zhang Y, Yuan Y . Isolation and functional characterization of a cold responsive phosphatidylinositol transfer-associated protein, ZmSEC14p, from maize( Zea may L.). Plant Cell Rep, 2016,35:1671-1686
doi: 10.1007/s00299-016-1980-4 pmid: 27061906 |
[16] |
Monks D E, Aghoram K, Courtney P D , De Wald D B, Dewey R E. Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. Plant Cell, 2001,13:1205-1219
doi: 10.1105/tpc.13.5.1205 |
[17] |
陈义强 . 甘蔗抗旱种质资源的筛选及斑茅杂种后代抗旱性分析 . 福建农林大学硕士学位论文, 福建福州, 2005
doi: 10.7666/d.y774985 |
Chen Y Q . Screening and analysis of the sugarcane drought resistant germplasm and the inte-rgeneric hybrids from crossing of Saccharum L. and E. arundinaceus Jeswiet. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2005 ( in Chinese with English abstract)
doi: 10.7666/d.y774985 |
|
[18] |
黄珑, 苏炜华, 张玉叶, 黄宁, 凌辉, 肖新换, 阙友雄, 陈如凯 . 甘蔗CIPK基因的同源克隆与表达. 作物学报, 2015,41:499-506
doi: 10.3724/SP.J.1006.2015.00499 |
Huang L, Su W H, Zhang Y Y, Huang N, Ling H, Xiao X H, Que Y X, Chen R K . Cloning and expression analysis of CIPK gene in sugarcane. Acta Agron Sin, 2015,41:499-506 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00499 |
|
[19] | Gandonou B, Agbangla C, Ahanhanzo C, Errabii T, Idaomar M, Abrini J, Skalisenhaji N . In vitro culture techniques as a tool of sugarcane bud germination study under salt stress. Afr J Biotechnol, 2008,7:3680-3682 |
[20] |
Koehler P H, Moore P H, Jones C A, Cruz A D, Maretzki A . Response of drip-irrigated sugarcane to drought stress. Agron J, 1982,74:906-911
doi: 10.2134/agronj1982.00021962007400050018x |
[21] |
Guo J L, Xu L P, Fang J P, Su Y C, Fu H Y, Que Y X, Xu J S . A novel dirigent protein gene with highly stem-specific expression from sugarcane, response to drought, salt and oxidative stresses. Plant Cell Rep, 2012,31:1801-1812
doi: 10.1007/s00299-012-1293-1 |
[22] | Su Y C, Xu L P, Xue B T, Wu Q B, Guo J L, Wu L G, Que Y X . Molecular cloning and characterization of two pathogenesis- related β-1,3-glucanase genes ScGluA1 and ScGluD1 from sugarcane infected by Sporisorium scitamineum. Plant Cell Rep, 2013,32:1503-1519 |
[23] |
Begcy K, Mariano E D, Gentile A, Lembke C G, Zingaretti S M, Souza G M, Menossi M . A novel stress induced sugarcane gene confers tolerance to drought, salt and oxidative stress in transgenic tobacco plants. PLoS One, 2012,7:e44697
doi: 10.1371/journal.pone.0044697 pmid: 3439409 |
[24] |
Chen Y, Ma J J, Zhang X , Y Yang Y T, Zhou D G, Yu Q, Que Y X, Xu L P, Guo J L. A novel non-specific lipid transfer protein gene from sugarcane ( NsLTPs), obviously responded to abiotic stresses and signaling molecules of SA and MeJA. Sugar Tech, 2016,19:1-9
doi: 10.1007/s12355-016-0431-4 |
[25] |
苏炜华, 刘峰, 黄珑, 苏亚春, 黄宁, 凌辉, 吴期滨, 张华, 阙友雄 . 甘蔗Ca 2+/H +反向运转体基因的克隆与表达分析 . 作物学报, 2016,42:1074-1082
doi: 10.3724/SP.J.1006.2016.01074 |
Su W H, Liu F, Huang L, Su Y C, Huang N, Ling H, Wu Q B, Zhang H, Que Y X . Cloning and expression analysis of a Ca 2+/H + antiporter gene from sugarcane . Acta Agron Sin, 2016,42:1074-1082 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01074 |
|
[26] |
Huang J, Kim C M, Xuan Y H, Park S J, Hai L P, Je B I, Liu J M, Kim T H, Kim B K, Han C D . OsSNDP1, a Sec14-nodulin domain-containing protein, plays a critical role in root hair elongation in rice. Plant Mol Biol, 2013,82:39-50
doi: 10.1007/s11103-013-0033-4 pmid: 23456248 |
[27] |
Kiełbowiczmatuk A, Banachowicz E, Turskatarska A, Rey P, Rorat T . Expression and characterization of a barley phosphatidylinositol transfer protein structurally homologous to the yeast Sec14p protein. Plant Sci, 2016,246:98-111
doi: 10.1016/j.plantsci.2016.02.014 pmid: 26993240 |
[28] | Guo J L, Ling H, Wu Q B, Xu L P, Que Y X . The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014,4:7042 |
[29] |
Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) Method. Methods, 2001,25:402-408
doi: 10.1006/meth.2001.1262 |
[30] |
罗明武, 邓柳红 . 巴西橡胶树磷脂酰肌醇转移蛋白cDNA的克隆及其序列分析. 基因组学与应用生物学, 2010,29:164-169
doi: 10.3969/gab.029.000164 |
Luo M W, Deng L H . Cloning and sequence analysis of phosphatidylinositol transfer protein cDNA from Hevea brasilensis. Genomics Appl Biol, 2010,29:164-169 (in Chinese with English abstract)
doi: 10.3969/gab.029.000164 |
|
[31] |
Domain T L S . The lipid-binding SEC 14 domain. BBA-Mol Cell Biol L, 2007,1771:719-726
doi: 10.1016/S0926-860X(00)00425-7 |
[32] |
Huang J, Ghosh R, Bankaitis V A . Sec14-like phosphatidylinositol transfer proteins and the biological landscape of phosphoinositide signaling in plants. Biochim Biophys Acta, 2016,1861:1352-1364
doi: 10.1016/j.bbalip.2016.03.027 |
[33] |
莫萍丽 . 拟南芥两个在花中特异表达的Sec14-like磷脂酰肌醇转移蛋白的分子生物学研究 . 厦门大学博士学位论文, 福建厦门, 2006
doi: 10.7666/d.y1345372 |
Mo P L . Molecular biology of two Sec14-like phosphatidylinositol transfer proteins that specifically expressed in flowers of Arabidopsis thaliana. PhD Dissertation of Xiamen University, Xiamen, Fujian, China, 2006 ( in Chinese with English abstract)
doi: 10.7666/d.y1345372 |
|
[34] | 刘岩, 彭学贤 . 植物抗渗透胁迫基因工程研究进展. 中国生物工程杂志, 1997,17(2):30-37 |
Liu Y, Peng X X . Advances in genetic engineering of plant osmotic stress resistance. China Biotechnol, 1997,17(2):30-37 (in Chinese) | |
[35] |
Kang G, Li G, Guo T . Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants. Acta Physiol Plant, 2014,36:2287-2297
doi: 10.1007/s11738-014-1603-z |
[36] |
Berridge M J, Irvine R F . Inositol phosphates and cell signalling. Nature, 1989,341:197-205
doi: 10.1038/341197a0 pmid: 2550825 |
[37] | 蔡囊, 李吉跃, 李永杰 . 土壤重金属污染下植物效应研究进展. 林业与环境科学, 2009,25(2):71-77 |
Cai N, Li J Y, Li Y J . Advances on the effect of heavy metal containated soils on plant. For Environ Sci, 2009,25(2):71-77 (in Chinese with English abstract) | |
[38] |
Hsuan J , Cockcroft S. The PITP family of phosphatidylinositol transfer proteins. Genome Biol, 2001, 2: REVIEWS3011
doi: 10.1186/gb-2001-2-9-reviews3011 pmid: 138965 |
[1] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[2] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[3] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[4] | LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545. |
[5] | WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287. |
[6] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
[7] | WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198. |
[8] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[9] | XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234. |
[10] | ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026. |
[11] | KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872. |
[12] | DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703. |
[13] | YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341. |
[14] | ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528. |
[15] | CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790. |
|