Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (7): 1055-1066.doi: 10.3724/SP.J.1006.2018.01055

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Fertilizer Response and Its Contribution to Yield of Foxtail Millet under Ridge-furrow Rainfall Harvesting Planting Model in Semi-arid Areas

Xue-Jiao CHEN1,2,Xu-Dong ZHANG1,2,Zhi-Zhong HAN1,2,Peng ZHANG1,2,Zhi-Kuan JIA1,2,Yan-Hao LIAN1,Qing-Fang HAN1,2,*   

  1. 1 Key Laboratory of Crop Physi-ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture / College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China;
    2 Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education / Institute of Water-saving Agriculture in Arid Area of China, Northwest A&F University, Yangling 712100, Shaanxi, China;
  • Received:2017-10-01 Accepted:2018-03-26 Online:2018-07-10 Published:2018-04-23
  • Contact: Qing-Fang HAN
  • Supported by:
    This study was supported by the National High Technology Research and Development Program of China (2013AA102902), the National Key Technology Support Program of China (2012BAD09B03), and the “111” Project of Chinese Education Ministry (B12007).

Abstract:

A field experiment was conducted under ridge-furrow rainfall harvesting planting model in 2013 (flood years) and 2014 (drought years) to explore the combined effect of planting model and fertilizer level on yield and fertilizer utilization efficiency of foxtail millet. A two-factor randomized block designed pot with two planting models (rainfall harvesting planting model, R; traditional flat planting model, T) and four fertilizer levels (N 270 kg ha -1+P2O5 180 kg ha -1, H; N 180 kg ha -1+P2O5 120 kg ha -1, M; N 90 kg ha -1+P2O5 60 kg ha -1, L; with no fertilizer as control) was used in the experiment. Plant height, leaf area, photosynthetic rate, water and fertilizer use efficiency, and source of yield increase of foxtail millet were analysed. Compared with T, R effectively promoted the photosynthetic physiology and growth of side row of foxtail millet, increasing plant height by 7.1%-23.5%, the top three leaves area by 1.7%-22.7%, Pn (photosynthetic rate) by 10.4%-20.3%, Tr (transpiration rate) by 8.0%-55.9%, and dry matter by 9.8%-30.0% in different fertilization treatments. There was no significantly difference between the middle rows of R and T on the five indexes. R significantly improved water and fertilizer use efficiency. Application of nitrogen and phosphorus fertilizer significantly improved WUE, in flood years H was significantly higher than M and L, in drought years M was significantly higher than H and no significantly difference with L, Fertilizer use efficiency decreased with the increase of fertilization amount, which was significantly higher in L than in M and H in flood years, with significant difference between the treatments of fertilization in drought years. Effect of fertilizer was bigger than that of planting factor in contribution rate to foxtail millet yield. Contribution rate of fertilization increased by 27.8%-49.3% with increasing fertilizer amount in flood years, with significant, difference among treatments while these was no significant difference in all treatments in the drought years (19.2%-23.7%), Contribution rate of planting model was not significantly different between treatments in two years. Therefore, RH in flood years and RM in drought years could be regarded as a better farming management with high yield and high efficiency in semi-arid area of southern Ningxia.

Key words: ridge-furrow rainfall harvesting planting, fertilizer, foxtail millet, yield, combined action

Table 1

Nutrient status of 0-60 cm soil layer"

年份
Year
土层
Soil layer
(cm)
有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
碱解氮
Hydro-N
(mg kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
2013 0-20 12.30 0.85 20.65 8.76 59.18
20-40 13.90 0.85 20.37 3.77 86.16
40-60 12.83 0.81 21.21 3.25 73.73
2014 0-20 14.86 0.98 63.16 23.68 136.47
20-40 13.41 0.92 48.25 5.09 103.71
40-60 14.21 0.93 47.42 4.41 90.11

Table 2

Treatments of experiment"

处理
Treatment
种植模式
Planting model
施肥水平
Fertilizer level
集雨种植模式下高量施肥RH 集雨种植模式R N 270 kg hm-2, P2O5 180 kg hm-2(H)
集雨种植模式下中量施肥RM 集雨种植模式R N 180 kg hm-2, P2O5 120 kg hm-2(M)
集雨种植模式下低量施肥RL 集雨种植模式R N 90 kg hm-2, P2O5 60 kg hm-2(L)
集雨种植模式下不施肥RCK 集雨种植模式R N 0 kg hm-2, P2O5 0 kg hm-2(CK)
平作模式下高量施肥TH 平作种植模式T N 270 kg hm-2, P2O5 180 kg hm-2(H)
平作模式下中量施肥TM 平作种植模式T N 180 kg hm-2, P2O5 120 kg hm-2(M)
平作模式下低量施肥TL 平作种植模式T N 90 kg hm-2, P2O5 60 kg hm-2(L)
平作模式下不施肥TCK 平作种植模式T N 0 kg hm-2, P2O5 0 kg hm-2(CK)

Fig. 1

Monthly rainfall in 2013-2014 and mean monthly rainfall in the past 40 years"

Fig. 2

Plant height in side and middle rows at various growth stages of foxtail millet in rainfall harvesting planting model RH-S: the side row with foxtail millet of high fertilizer application under the ridge and furrow rainfall harvesting system; RH-M: the middle row with foxtail millet of high fertilizer application under the ridge and furrow rainfall harvesting system; TH: the foxtail millet with high fertilizer application under the traditional flat planting model; RM-S: the side row of foxtail millet with middle fertilizer application under the ridge and furrow rainfall harvesting system; RM-M: the middle row with foxtail millet of middle fertilizer application under the ridge and furrow rainfall harvesting system; TM: the foxtail millet with middle fertilizer application under the traditional flat planting model; RL-S: the side row of foxtail millet with low fertilizer application under the ridge and furrow rainfall harvesting system; RL-M: the middle row of foxtail millet with low fertilizer application under the ridge and furrow rainfall harvesting system; TL: the foxtail millet with low fertilizer application under the traditional flat planting model; RCK-S: the side row of foxtail millet without fertilization under the ridge and furrow rainfall harvesting system; RCK-M: the middle row of foxtail millet without fertilization under the ridge and furrow rainfall harvesting system; TCK: the foxtail millet without fertilization under the traditional flat planting model; S: seeding stage; J: jointing stage; EH: early heading stage; MH: middle heading stage; LH: later heading stage; F: filling stage."

Fig. 3

Top three leaves area in side and middle rows at various growth stages of foxtail millet with different fertilizer treatments under rainfall harvesting planting model Abbreviations are the same as those given in Fig. 2."

Table 3

P-value of ANOVA on effects of plant model, fertilization and years on photosynthetic parameters of foxtail millet"

测定项目
Item
种植模式
Planting model (P)
施肥水平
Fertilizer (F)
年份
Year (Y)
P×F P×Y F×Y P×F×Y
净光合速率
Pn (mol m-2 s-1)
边行 Side row <0.01 <0.01 <0.01 <0.05 <0.01 0.54 0.54
中行 Middle row <0.01 <0.01 0.91 0.43 0.92 0.35 0.35
蒸腾速率
Tr (mol m-2 s-1)
边行 Side row <0.01 <0.01 0.35 0.41 0.73 0.78 0.92
中行 Middle row <0.01 <0.01 0.52 0.25 0.96 0.28 0.57
气孔导度
Gs (mol m-2 s-1)
边行 Side row <0.01 <0.01 <0.01 0.90 <0.01 <0.01 0.99
中行 Middle row <0.05 <0.01 <0.01 0.25 <0.01 <0.01 0.07

Table 4

Photosynthetic characteristics of flag leaf at filling stage of millet in different treatments"

年份
Year
处理
Treatment
净光合速率 Pn (mol m-2 s-1) 蒸腾速率 Tr (mol m-2 s-1) 气孔导度 Gs (mol m-2 s-1)
边行
Side row
中行
Middle row
边行
Side row
中行
Middle row
边行
Side row
中行
Middle row
2013 RH 20.33 a 19.39 a 5.82 a 5.25 a 0.27 a 0.21 a
RM 17.41 b 17.62 ab 5.53 ab 5.46 a 0.26 ab 0.21 a
RL 14.81 bcd 17.21 ab 5.08 b 5.57 a 0.21 bc 0.22 a
RCK 14.67 cd 11.15 d 4.28 c 3.32 bc 0.18 c 0.11 bc
TH 16.78 bc 16.78 b 5.20 ab 5.20 a 0.19 c 0.19 a
TM 15.21 bcd 15.21 bc 4.96 b 4.96 a 0.16 cd 0.16 ab
TL 13.76 d 13.76 c 4.10 c 4.10 b 0.12 de 0.12 bc
TCK 8.44 e 8.44 e 2.50 d 2.50 c 0.09 e 0.09 c
2014 RH 22.03 a 18.47 ab 6.05 a 5.23 ab 0.14 a 0.12 ab
RM 20.76 ab 17.68 abc 5.70 a 5.40 ab 0.14 a 0.11 abc
RL 20.52 ab 15.82 bcd 5.55 a 4.93 ab 0.13 a 0.09 bc
RCK 17.94 bc 13.75 d 4.70 ab 4.75 ab 0.11 ab 0.09 c
TH 19.96 ab 19.96 a 5.60 a 5.60 a 0.12 ab 0.12 a
TM 18.57 abc 18.57 ab 4.38 ab 4.38 ab 0.11 ab 0.11 abc
TL 17.82 bc 17.82 abc 4.36 ab 4.36 ab 0.11 ab 0.11 abc
TCK 14.91 c 14.91 cd 3.02 b 3.02 b 0.09 b 0.09 bc

Fig. 4

Dry matter per plant in side and middle rows at various growth stages of foxtail millet with different fertilizer treatments under rainfall harvesting planting model Abbreviations are the same as those given in Fig. 2."

Table 5

P-value of ANOVA on effects of plant model, fertilization and years on grain yield, water use efficiency, agronomic efficiency and partial factor productivity efficiency of foxtail millet"

测定项目
Item
种植模式
Planting model (P)
施肥水平
Fertilizer (F)
年份
Year (Y)
P×F P×Y F×Y P×F×Y
籽粒产量Yield (kg hm-2) <0.05 <0.01 <0.01 0.52 <0.01 <0.01 <0.05
水分利用效率WUE (kg hm-2 mm-1) <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01
氮(磷)肥农学效率N (P2O5) AE (kg kg-1) <0.05 <0.01 <0.01 0.06 0.52 0.10 <0.01
氮(磷)肥偏生产力N (P2O2) PPE (kg kg-1) <0.05 <0.01 <0.01 0.47 <0.01 <0.01 <0.01

Table 6

Grain yield and water use efficiency in different treatments"

年份
Year
处理
Treatment
籽粒产量Yield
(kg hm-2)
生物产量Biomass
(kg hm-2)
收获指数Harvest index
(%)
耗水量
ET
(mm)
水分利用效率WUE
(kg hm-2 mm-1)
氮(磷)肥农学效率N(P2O5) AE
(kg kg-1)
氮(磷)肥偏生产力N(P2O2) PPE
(kg kg-1)
2013 RH 7075 a 13722 a 51.7 a 505.6 c 14.0 a 12.9 bc (19.4 b) 26.2 d (39.3 d)
RM 6171 c 12019 b 51.6 a 486.4 de 12.7 b 14.4 b (21.6 b) 34.3 c (51.4 c)
RL 4966 e 10019 d 49.6 ab 477.0 e 10.4 c 15.4 ab (23.0 a) 55.2 b (82.8 b)
RCK 3584 f 7989 f 45.2 c 460.4 f 7.8 d
TH 6715 b 13893 a 48.3 b 534.4 a 12.6 b 10.7 c (16.0 c) 24.9 d (37.3 d)
TM 6269 c 12455 b 50.4 ab 522.3 b 12.0 b 13.5 b (20.3 b) 34.8 c (52.2 c)
TL 5353 d 10937 c 49.0 b 515.1 bc 10.4 c 16.9 a (25.3 a) 59.5 a (89.2 a)
TCK 3836 f 9134 e 42.0 d 491.9 d 7.8 d
2014 RH 7394 a 14502 a 50.9 bc 318.1 a 23.3 bc 6.5 c (9.7 c) 27.4 d (41.1 d)
RM 7325 ab 14093 a 51.9 ab 299.1 bc 24.5 a 9.3 b (14.0 b) 40.7 c ( 61.0 c)
RL 6984 c 13030 b 53.5 a 293.2 c 23.8 ab 14.9 a (22.3 a) 77.6 a (116.4 a)
RCK 5643 e 11262 c 49.6 c 266.0 d 21.2 e
TH 7116 bc 14027 a 50.7 bc 320.7 a 22.2 d 7.0 c (10.5 c) 26.4 d (39.5 d)
TM 7038 c 14164 a 49.6 c 307.4 b 22.9 cd 10.0 b (15.1 b) 39.1 c (58.7 c)
TL 6236 d 12658 b 49.2 cd 291.4 c 21.4 e 11.2 b (16.8 b) 69.3 b (103.9 b)
TCK 5231 f 11035 c 47.2 d 275.2 d 19.0 f

Table 7

Contribution rate to foxtail millet yield in rainfall harvesting planting model"

处理
Treatment
基础地力 Basic fertility 种植模式 Planting 施肥 Fertilizer 种植模式与施肥综合作用 IPCF
产量
Yield
(kg hm-2)
贡献率Contribution rate
(%)
增产量
Increase of yield
(kg hm-2)
贡献率Contribution rate (%) 增产量
Increase of yield
(kg hm-2)
贡献率Contribution rate (%) 增产量
Increase of yield
(kg hm-2)
贡献率Contribution rate (%)
2013
RH 3836 54.3 c -251.8 -3.5 a 3491 a 49.3 a 3239 a 45.8 a
RM 62.2 b -4.1 a 2587 b 41.9 b 2335 b 37.8 b
RL 77.3 a -5.1 a 1382 c 27.8 c 1130 c 22.8 c
RCK
2014
RH 5231 70.8 a 412.4 5.6 a 1751 a 23.7 a 2163 a 29.3 a
RM 71.4 a 5.7 a 1682 a 23.0 a 2094 a 28.6 a
RL 74.9 a 5.9 a 1341 a 19.2 a 1753 a 25.1 a
RCK
[1] 钮溥, 贾永萤, 韩思明 . 农业开发中的一项科技发展战略——中国干旱半干旱地区农业开发与科技发展战略问题探讨. 科学学研究, 1984,2(3):51-57
Niu F, Jia Y Y, Han S M . A science and technology development strategy in agricultural development: a discussion on agricultural development and science and technology development strategy in arid and semi-arid areas of China. Stud Sci Sci, 1984,2(3):51-57 (in Chinese)
[2] 张德奇, 廖允成, 贾志宽, 季书勤, 刘加平, 李永平, 刘世新 . 宁南旱区谷子地膜覆盖的土壤水温效应. 中国农业科学, 2005,38:2069-2075
doi: 10.3321/j.issn:0578-1752.2005.10.018
Zhang D Q, Liao Y C, Jia Z K, Ji S Q, Liu J P, Li Y P, Liu S X . Effects of plastic film mulching of millet on soil moisture and temperature in semi-arid areas in South Ningxia. Sci Agric Sin, 2005,38:2069-2075 (in Chinese with English abstract)
doi: 10.3321/j.issn:0578-1752.2005.10.018
[3] 任瑞玉, 何继红, 董孔军, 刘天鹏, 张磊, 杨天育 . 旱地谷子渗水地膜覆盖栽培的土壤水温效应及其生长发育研究. 干旱地区农业研究, 2016,34(3):127-131
doi: 10.7606/j.issn.1000-7601.2016.03.20
Ren R Y, He J H, Dong K J, Liu T P, Zhang L, Yang T Y . Effects of water-permeability plastic film mulching on soil moisture, temperature and growth and development of foxtail millet in dry land. Agric Res Arid Areas, 2016,34(3):127-131 (in Chinese with English abstract)
doi: 10.7606/j.issn.1000-7601.2016.03.20
[4] 李永平, 刘世新, 贾志宽, 聂俊峰, 曹秀霞, 李明芳 . 垄沟集水种植对土壤有效蓄水量及谷子生长、光合特性的影响. 西北农林科技大学学报(自然科学版), 2007,35(10):163-167
doi: 10.3321/j.issn:1671-9387.2007.10.032
Li Y P, Liu S X, Jia Z K, Nie J F, Cao X X, Li M F . Effects of water retaining planting technique under ridge and ditch micro-collection on growth, photosynthetic rate and transpiration rate of dry-land foxtail millet. J Northwest A&F Univ ( Nat Sci Edn), 2007,35(10):163-167 (in Chinese with English abstract)
doi: 10.3321/j.issn:1671-9387.2007.10.032
[5] 高玉红, 牛俊义, 闫志利, 郭丽琢, 姜寒玉, 马朋丽, 马菊红 . 不同覆膜栽培方式对玉米干物质积累及产量的影响. 中国生态农业学报, 2012,20:440-446
doi: 10.3724/SP.J.1011.2012.00440
Gao Y H, Niu J Y, Yan Z L, Guo L Z, Jiang H Y, Ma P L, Ma J H . Effects of different plastic-film mulching techniques on maize (Zea mays L.) dry matter accumulation and yield. Chin J Eco-Agric, 2012,20:440-446 (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2012.00440
[6] Zhu L, Liu J L, Luo S S, Bu L D, Chen X P, Li S Q . Soil mulching can mitigate soil water deficiency impacts on rain fed maize production in semiarid environments. J Integr Agric, 2015,14:58-66
doi: 10.1016/S2095-3119(14)60845-5
[7] 汪德水, 程宪国, 张美荣, 周涌 . 旱地土壤中的肥水激励机制. 植物营养与肥料学报, 1995,1:64-70
doi: 10.11674/zwyf.1995.0110
Wang D S, Cheng X G, Zhang M R, Zhou Y . The excitation mechanism between fertilizer and water under dryland condition. Plant Nutr Fert Sci, 1995,1:64-70 (in Chinese with English abstract)
doi: 10.11674/zwyf.1995.0110
[8] 李生秀 . 中国旱地土壤植物氮素. 北京: 科学技术出版社, 2008. pp 695-696
Li S X. Soil and Plant Nitrogen in Dryland Areas of China. Beijing: Science Press, 2008. pp 695-696(in Chinese)
[9] 李科江, 李保国, 胡克林, 曹彩云, 郑春莲 . 不同水肥管理对冬小麦灌浆影响的模拟研究. 植物营养与肥料学报, 2004,10:449-454
doi: 10.3321/j.issn:1008-505X.2004.05.001
Li K J, Li B G, Hu K L, Cao C Y, Zheng C L . Modeling kernel filling of winter wheat for optimum field management. Plant Nutr Fert Sci, 2004,10:449-454 (in Chinese with English abstract)
doi: 10.3321/j.issn:1008-505X.2004.05.001
[10] Shen Y F, Li S Q . Effects of the spatial coupling of water and fertilizer on the chlorophyll fluorescence parameters of winter wheat leaves. J Integr Agric, 2011,10:1923-1931
doi: 10.1016/S1671-2927(11)60193-4
[11] 郭天文, 谢永春, 张平良, 刘晓伟, 姜小凤 . 不同种植和施肥方式对旱地春玉米土壤水分含量及其水分利用效率的影响. 水土保持学报, 2015,29(5):231-238
doi: 10.13870/j.cnki.stbcxb.2015.05.042
Guo T W, Xie Y C, Zhang P L, Liu X W, Jiang X F . Effects of different patterns of planting and fertilization on soil moisture and water use efficiency of spring maize on dryland. J Soil Water Conserv, 2015,29(5):231-238 (in Chinese with English abstract)
doi: 10.13870/j.cnki.stbcxb.2015.05.042
[12] 张仁陟, 李小刚, 胡恒觉 . 施肥对提高旱地农田水分利用效率的机理. 植物营养与肥料学报, 1999,5:221-226
Zhang R Z, Li X G, Hu H J . The mechanism of fertilization in increasing water use efficiency. Plant Nutr Fert Sci, 1999,5:221-226 (in Chinese with English abstract)
[13] 王浩, 王淑兰, 徐宗贵, 李军 . 耕作与施肥对旱地玉米田土壤耗水量和水分利用效率的影响. 中国生态农业学报, 2017,25:856-864
doi: 10.13930/j.cnki.cjea.160990
Wang H, Wang S L, Xu Z G, Li J . Effect of tillage and fertilization on water use efficiency of maize in dryland conditions. Chin J Eco-Agric, 2017,25:856-864 (in Chinese with English abstract)
doi: 10.13930/j.cnki.cjea.160990
[14] Li S X, Wang Z H, Li S Q, Gao Y J . Effect of nitrogen fertilization under plastic mulched and non-plastic mulched conditions on water use by maize plants in dryland areas of China. Agric Water Manage, 2015,162:15-32
doi: 10.1016/j.agwat.2015.08.004
[15] 于亚军, 李军, 贾志宽, 王蕾 . 不同水肥条件对宁南旱地谷子产量、WUE及光合特性的影响. 水土保持研究, 2006,13(2):87-90
doi: 10.3969/j.issn.1005-3409.2006.02.029
Yu Y J, Li J, Jia Z K, Wang L . Effect of different water and fertilizer on yield, WUE and photosynthetic characteristics of millet in southern Ningxia semi-arid area. Res Soil Water Conserv, 2006,13(2):87-90 (in Chinese with English abstract)
doi: 10.3969/j.issn.1005-3409.2006.02.029
[16] 陶林威, 马洪, 葛芬丽 . 陕西省降水特性分析. 陕西气象, 2000, ( 5):6-9
Tao L W, Ma H, Ge F L . Analysis on the characteristics of precipitation in Shaanxi province. J Shaanxi Meteorol, 2000, ( 5):6-9 (in Chinese)
[17] 古世禄 . 谷子抽穗后干物质积累与运转及不同叶位叶片对产量的作用. 山西农业科学, 1981, ( 7):10-11
Gu S L . Effect of accumulation and translocation and leaves at different positions on the yield of dry millet after heading. J Shanxi Agric Sci, 1981, ( 7):10-11 (in Chinese)
[18] 王会肖, 刘昌明 . 作物水分利用效率内涵及研究进展. 水科学进展, 2000,11(1):99-104
doi: 10.3321/j.issn:1001-6791.2000.01.018
Wang H X, Liu C M . Advances in crop water use efficiency research. Adv Water Sci, 2000,11(1):99-104 (in Chinese with English abstract)
doi: 10.3321/j.issn:1001-6791.2000.01.018
[19] 马兴华, 王东, 于振文, 王西芝, 许振柱 . 不同施氮量下灌水量对小麦耗水特性和氮素分配的影响. 生态学报, 2010,30:1955-1965
Ma X H, Wang D, Yu Z W, Wang X Z, Xu Z Z . Effect of irrigation regirues on water consumption characteristics and nitrogen distribution in wheat at different nitrogen applications. Acta Ecol Sin, 2010,30:1955-1965 (in Chinese with English abstract)
[20] 张璐, 沈善敏, 宇万太, 廉鸿志 . 辽西褐土施肥及养分循环再利用中长期试验: V. 不同降水年景作物产量对施肥的反应和水肥交互作用. 应用生态学报, 2003,14:2205-2207
Zhang L, Shen S M, Yu W T, Lian H Z . Long-term trial on fertilization and on use of recycled nutrients in farming systems: V. Response of crop yields to fertilization in different precipitation years and estimates of water and nutrient interaction. Chin J Appl Ecol, 2003,14:2205-2207 (in Chinese with English abstract)
[21] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风 . 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45:915-924
doi: 10.3321/j.issn:0564-3929.2008.05.018
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F . Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008,45:915-924 (in Chinese with English abstract)
doi: 10.3321/j.issn:0564-3929.2008.05.018
[22] 马强, 宇万太, 沈善敏, 张璐 . 旱地农田水肥效应研究进展. 应用生态学报, 2007,18:665-673
Ma Q, Yu W T, Shen S M, Zhang L . Research advances in water-fertilizer effect on dry land farmland. Chin J Appl Ecol, 2007,18:665-673 (in Chinese with English abstract)
[23] 张德奇, 廖允成, 贾志宽, 刘世新, 李永平 . 宁南旱区谷子集水保水技术效应研究. 中国生态农业学报, 2006,14(4):51-53
Zhang D Q, Liao Y C, Jia Z K, Liu S X, Li Y P . Effects of techniques of water harvesting and water conservation on millet planting in semi-arid areas in South Ningxia. Chin J Eco-Agric, 2006,14(4):51-53 (in Chinese with English abstract)
[24] 王俊鹏, 马林, 蒋骏, 贾志宽 . 宁南半干旱地区谷子微集水种植技术研究. 水土保持通报, 2000,20(3):41-43
Wang J P, Ma L, Jiang J, Jia Z K . Research on millet planting technique of micro-water harvesting in semi-arid area of the south part of Ningxia province. Bull Soil Water Conserv, 2000,20(3):41-43 (in Chinese with English abstract)
[25] 张野, 王显瑞, 赵禹凯, 李书田, 赵敏 . 覆膜对谷子农艺性状、产量及土壤物理性质的影响. 作物杂志, 2012, ( 5):153-158
Zhang Y, Wang X R, Zhao Y K, Li S T, Zhao M . The impacts of plastic film mulching on foxtail millet agronomic traits, yield and soil physical properties. Crops, 2012, ( 5):153-158 (in Chinese with English abstract)
[26] 丁瑞霞, 贾志宽, 韩清芳, 任广鑫, 王俊鹏 . 宁南旱区微集水种植条件下谷子边际效应和生理特性的响应. 中国农业科学, 2006,39:494-501
Ding R X, Jia Z K, Han Q F, Ren G X, Wang J P . Border effect and physiological characteristic responses of foxtail millet to different micro-catchment strip shapes in semiarid region of South Ningxia. Sci Agric Sin, 2006,39:494-501 (in Chinese with English abstract)
[27] 韩清芳, 李向拓, 王俊鹏, 蒋骏, 丁瑞霞, 刘正辉, 贾志宽 . 微集水种植技术的农田水分调控效果模拟研究. 农业工程学报, 2004,20(2):78-82
Han Q F, Li X T, Wang J P, Jiang J, Ding R X, Liu Z H, Jia Z K . Simulated study on soil moisture of field under water micro-collecting farming conditions. Trans CSAE, 2004,20(2):78-82 (in Chinese with English abstract)
[28] 丁瑞霞, 贾志宽, 韩清芳, 任广鑫, 王俊鹏 . 宁南旱区沟垄微型集水种植谷子最优沟垄宽度的确定. 干旱地区农业研究, 2007,25(2):12-16
doi: 10.3321/j.issn:1000-7601.2007.02.003
Ding R X, Jia Z K, Han Q F, Ren G X, Wang J P . Optimum width of ridge and furrow for planting foxtail millet in micro-water harvesting systems in arid area of the south part of Ningxia province. Agric Res Arid Areas, 2007,25(2):12-16 (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-7601.2007.02.003
[29] 严昌荣, 梅旭荣, 居辉, 赤杰 . 施肥对春谷子生长发育及水分利用效率的影响. 中国生态农业学报, 2006,14(1):142-144
Yan C R, Mei X R, Ju H, Chi J . Effects of fertilization on the growth, development and water use efficiency of spring millet. Chin J Eco-Agric, 2006,14(1):142-144 (in Chinese with English abstract)
[30] 封志明, 孙通, 杨艳昭 . 2003-2013年中国粮食增产格局及其贡献因素研究. 自然资源学报, 2016,31:895-907
Feng Z M, Sun T, Yang Y Z . Study on the spatiotemporal patterns and contribution factors of China’s grain output increase during 2003-2013. J Nat Resour, 2016,31:895-907 (in Chinese with English abstract)
[31] 曾希柏, 陈同斌, 林忠辉, 胡清秀 . 中国粮食生产潜力和化肥增产效率的区域分异. 地理学报, 2002,57:539-546
Zeng X B, Chen T B, Lin Z H, Hu Q X . Grain productivity and its potential as related to fertilizer consumption among different counties of China. Acta Geogr Sin, 2001,57:539-546 (in Chinese with English abstract)
[32] 董文 . “十一五”粮食丰产科技工程增产增效的成效分析. 作物杂志, 2012, ( 3):12-15
Dong W . The analysis of food production and agricultural efficiency of eleventh five-year science and technology project for food production. Crops, 2012, ( 3):12-15 (in Chinese with English abstract)
[33] 夏雪岩, 李顺国, 刘恩魁, 师志刚, 张德荣, 张婷, 陈媛, 杨起旺, 庞素芬, 刘芳, 连启超, 张敏, 赵建所, 程汝宏 . 半干旱区‘冀谷31’微集水种植增产机理研究. 干旱地区农业研究, 2015,33(3):184-189
doi: 10.7606/j.issn.1000-7601.2015.03.30
Xia X Y, Li S G, Liu E K, Shi Z G, Zhang D R, Zhang T, Chen Y, Yang Q W, Pang S F, Liu F, Lian Q C, Zhang M, Zhao J S, Cheng R H . Yield increasing effect of rainfall micro-catchments on the foxtail millet cultivar Jigu 31 in semiarid area. Agric Res Arid Areas, 2015,33(3):184-189 (in Chinese with English abstract)
doi: 10.7606/j.issn.1000-7601.2015.03.30
[34] 刘启, 贾志宽, 连延浩, 张旭东, 任小龙, 王俊鹏, 韩清芳 . 沟垄集雨种植模式下谷子种植密度对土壤水分及产量的影响. 干旱地区农业研究, 2016,34(2):81-87
doi: 10.7606/j.issn.1000-7601.2016.02.13
Liu Q, Jia Z K, Lian Y H, Zhang X D, Ren X L, Wang J P, Han Q F . Effects of planting density on water consumption and yield of foxtail millet under ridge-furrow rainfall harvesting planting mode. Agric Res Arid Areas, 2016,34(2):81-87 (in Chinese with English abstract)
doi: 10.7606/j.issn.1000-7601.2016.02.13
[35] 任小龙, 贾志宽, 陈小莉, 韩清芳, 李荣 . 模拟不同雨量下沟垄集雨种植对春玉米生产力的影响. 生态学报, 2008,28:1006-1015
doi: 10.3321/j.issn:1000-0933.2008.03.013
Ren X L, Jia Z K, Chen X L, Han Q F, Li R . Effects of rainwater-harvested furrow/ridge system on spring corn productivity under different simulated rainfalls. Acta Ecol Sin, 2008,28:1006-1015 (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-0933.2008.03.013
[36] 奚振邦, 王寓群, 杨佩珍 . 中国现代农业发展中的有机肥问题. 中国农业科学, 2004,37:1874-1878
doi: 10.3321/j.issn:0578-1752.2004.12.014
Xi Z B, Wang Y Q, Yang P Z . The issue on organic manure in developing modern agriculture in China. Sci Agric Sin, 2004,37:1874-1878 (in Chinese with English abstract)
doi: 10.3321/j.issn:0578-1752.2004.12.014
[37] 李正鹏, 宋明丹, 冯浩 . 水氮耦合下冬小麦 LAI 与株高的动态特征及其与产量的关系. 农业工程学报, 2017,33(4):195-202
Li Z P, Song M D, Feng H . Dynamic characteristics of leaf area index and plant height of winter wheat influenced by irrigation and nitrogen coupling and their relationships with yield. Trans CSAE, 2017,33(4):195-202 (in Chinese with English abstract)
[38] 何继红, 李沣, 董孔军, 李耀辉, 王自忠, 杨天育 . 施肥对旱地地膜覆盖栽培谷子产量的影响. 河北农业科学, 2010,14(11):59-61
doi: 10.3969/j.issn.1088-1631.2010.11.021
He J H, Li P, Dong K J, Li Y H, Wang Z Z, Yang T Y . Study on the effects of fertilization on the yield of millet cultivated in plastic film on dry land. J Hebei Agric Sci, 2010,14(11):59-61 (in Chinese with English abstract)
doi: 10.3969/j.issn.1088-1631.2010.11.021
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[11] DU Xiao-Fen, WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun. Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Acta Agronomica Sinica, 2022, 48(4): 873-885.
[12] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[13] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[14] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[15] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!