Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (9): 1386-1397.doi: 10.3724/SP.J.1006.2019.94074

• TILLAGE & CULTIVATION· PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects and physiological mechanisms of sowing depth on the growth progress and leaf senescence of peanut

ZHEN Xiao-Yu,YANG Jian-Qun,LI Xin-Xin,LIU Zhao-Xin,GAO Fang,ZHAO Ji-Hao,LI Ying,QIAN Bi-Chang,LI Jin-Rong,YANG Dong-Qing(),LI Xiang-Dong()   

  1. College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
  • Received:2019-01-03 Accepted:2019-04-15 Online:2019-09-12 Published:2019-05-14
  • Contact: Dong-Qing YANG,Xiang-Dong LI E-mail:chengyang2364@126.com;lixdong@sdau.edu.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2018YFD1000900);the Shandong Modern Agricultural Technology & Industry System(SDAIT-04-01);Shandong Key Research and Development Program(2018YFJH0601-3)


A 2-year field study was conducted using Shanhua 108 with seven levels of sowing depth (SD3, SD5, SD7, SD9, SD11, SD13, and SD15) by ridging and mulching under the suitable soil moisture condition to identify and assess the effects of sowing depth on growth progress, chlorophyll content, photosynthetic characteristics, dry matter accumulation, antioxidant enzyme activities and yield formation in peanut. The sowing depth significantly affected the emergence time of peanut. Compared with SD5 treatment, the seedling emergence time of SD15 was delayed five days (d), and the yield formation period was shortened 2.5 d. The shallow seeding treatment (SD3) and deep-planting treatments (depth >7 cm) significantly reduced the height of main stem and the length of branch, resulting in a decrease in leaf area index (LAI). Moreover, the chlorophyll content and net photosynthetic rate during yield formation period of those treatments were significantly decreased, leading to a decrease of dry matter accumulation of plants. At the same time, increasing sowing depth significantly reduced soluble protein content, superoxide dismutase (SOD) and peroxidase (POD) activities, increased malonaldehyde (MDA) content during the yield formation period. The pod yield and seed yield in SD5 treatment was the highest due to the highest pod number per plant, the single pod weight and shelling rate, and deep-sowing (depth >7 cm) was adverse to yield. Therefore, the appropriate sowing depth should be 5 cm in the peanut cultivation practice.

Key words: sowing depth, peanut, growth progress, antioxidant system, yield

Table 1

Daily average temperature, relative humidity and precipitation during the seedling stage of peanut in 2017 and 2018"

Days after sowing (d)
2017 2018
Average temperature (°C)
Relative humidity (%)
Average temperature (°C)
Relative humidity (%)
1 23.4 64 0 18.2 73 1.3
2 23.6 53 0 19.8 65 0
3 23.7 47 0 21.3 53 0
4 20.1 42 0 21.6 37 0
5 20.9 45 13 20.2 36 0
6 19.7 61 0 20.3 42 0
7 23.2 54 0 18.4 70 0
8 26.0 49 0 19.9 68 0
9 26.3 54 0 24.5 66 0
10 25.8 51 0 26.2 55 0
11 24.8 58 0 27.1 71 6.4
12 25.9 61 0 25.2 79 3.8

Fig. 1

Precipitation and average temperature during the growth period of peanut in 2017 and 2018"

Fig. 2

Effects of sowing depth on the growth progress of peanut at different stages SD3, SD5, SD7, SD9, SD11, SD13, and SD15 are expressed as sowing depth of 3, 5, 7, 9, 11, 13, and 15 cm, respectively; VE-R8: growing period of peanut."

Fig. 3

Effects of sowing depth on dry matter accumulation of peanut Abbreviations are the same as those given in Fig. 2."

Fig. 4

Effects of sowing depth on main stem height and branch length of peanut 缩写同图2。Abbreviations are the same as those given in Fig. 2."

Table 2

Effects of sowing depth on chlorophyll content in peanut leaves (mg g-1)"

Growth stage
2017 2018
Chl a
Chl b
Chl a+b
Chl a
Chl b
Chl a+b
R3 SD3 1.90 b 0.78 b 2.68 b 2.15 a 0.90 a 3.05 b
SD5 1.94 a 0.81a 2.74 a 2.20 a 0.91 a 3.11 a
SD7 1.87 b 0.77 b 2.65 b 2.18 a 0.90 a 3.08 b
SD9 1.81 c 0.75 c 2.56 c 2.07 b 0.86 b 2.93 c
SD11 1.76 d 0.72 d 2.48 d 1.97 c 0.82 c 2.78 d
SD13 1.63 e 0.69 e 2.32 e 1.83 d 0.77 d 2.60 e
SD15 1.61 e 0.69 e 2.30 e 1.80 d 0.76 d 2.56 e
R5 SD3 2.24 b 0.90 b 3.15 b 2.46 b 0.93 b 3.39 b
SD5 2.37 a 0.93 a 3.30 a 2.55 a 0.97 a 3.53 a
SD7 2.37 a 0.89 b 3.27 a 2.40 bc 0.93 b 3.33 b
SD9 2.25 b 0.89 b 3.14 b 2.34 c 0.91 c 3.25 c
SD11 2.07 c 0.87 c 2.94 c 2.25 d 0.89 d 3.15 d
SD13 1.99 d 0.84 d 2.83 d 2.04 e 0.88 e 2.92 e
SD15 1.96 d 0.84 d 2.80 d 2.02 e 0.88 e 2.90 e
Growth stage
2017 2018
Chl a
Chl b
Chl a+b
Chl a
Chl b
Chl a+b
R7 SD3 1.54 b 0.76 b 2.29 b 1.63 a 0.71 c 2.34 b
SD5 1.65 a 0.81 a 2.46 a 1.68 a 0.80 a 2.48 a
SD7 1.62 a 0.81 a 2.43 a 1.65 b 0.80 a 2.45 a
SD9 1.48 c 0.71 c 2.20 c 1.53 c 0.73 b 2.26 c
SD11 1.44 d 0.68 d 2.12 d 1.49 d 0.71 c 2.19 d
SD13 1.43 d 0.68 d 2.11 d 1.39 e 0.68 d 2.07 e
SD15 1.36 e 0.64 e 2.00 e 1.36 e 0.67 d 2.03 e
R8 SD3 1.28 b 0.61 b 1.89 b 1.20 c 0.64 b 1.84 b
SD5 1.44 a 0.65 a 2.09 a 1.51 a 0.68 a 2.19 a
SD7 1.28 b 0.58 bc 1.86 b 1.46 b 0.69 a 2.15 a
SD9 1.09 c 0.57 c 1.65 c 1.17 c 0.64 bc 1.81 b
SD11 0.76 d 0.53 d 1.30 d 0.99 d 0.61 c 1.61 c
SD13 0.74 de 0.52 d 1.26 d 0.91 e 0.56 d 1.47 d
SD15 0.69 e 0.51 d 1.21 e 0.90 e 0.55 d 1.45 d

Fig. 5

Effects of sowing depth on leaf area index of peanut 缩写同图2。Abbreviations are the same as those given in Fig. 2."

Fig. 6

Effects of sowing depth on leaf net photosynthetic rate (Pn) in peanut 缩写同图2。Abbreviations are the same as those given in Fig. 2."

Fig. 7

Effects of sowing depth on activity of SOD in peanut leaves 缩写同图2。Abbreviations are the same as those given in Fig. 2."

Fig. 8

Effects of sowing depth on activity of POD in peanut leaves 缩写同图2。Abbreviations are the same as those given in Fig. 2."

Fig. 9

Effects of sowing depth on MDA content in peanut leaves 缩写同图2。Abbreviations are the same as those given in Fig. 2."

Fig. 10

Effects of sowing depth on soluble protein content in peanut leaves 缩写同图2。Abbreviations are the same as those given in Fig. 2."

Table 3

Effects of sowing depth on yield and its components of peanut"

Pod yield
(kg hm-2)
Kernel yield
(kg hm-2)
Pods kg-1
Pods per plant
Shelling rate
2017 SD3 5645.6±30 bc 4036.4±46 c 490.7±11 c 15.0±0.7 b 71.1±0.5 d
SD5 5935.9±86 a 4406.8±72 a 425.3±7 e 17.2±0.4 a 74.3±0.3 a
SD7 5745.7±46 b 4197.9±34 b 452.7±3 d 15.6±0.5 b 73.1±0.2 b
SD9 5615.6±30 c 4057.4±26 c 454.0±4 d 14.8±0.8 b 72.3±0.6 c
SD11 5435.4±60 dc 3896.7±47 d 478.0±2 c 13.8±0.4 c 71.6±0.1 cd
SD13 5265.3±46 e 3757.9±34 e 507.3±8 b 12.8±0.8 d 71.2±0.3 d
SD15 5105.1±79 f 3563.8±48 f 531.3±10 a 11.0±0.7 e 69.6±0.1 e
2018 SD3 5335.3±46 c 3821.0±54 b 485.3±10 d 13.3±0.3 c 71.6±0.4 b
SD5 5655.7±69 a 4078.2±55 a 456.7±6 e 16.3±0.2 a 72.3±0.2 a
SD7 5475.5±97 b 3973.9±85 a 484.0±8 d 14.9±0.5 b 72.5±0.5 a
SD9 5285.3±79 c 3761.3±77 b 506.7±4 c 12.7±0.4 c 71.5±0.3 b
SD11 5275.3±63 c 3751.4±32 b 525.3±7 b 12.6±0.2 c 70.7±0.2 c
SD13 5085.1±46 d 3504.0±57 c 528.0±3 b 10.9±0.4 d 68.5±0.4 d
SD15 4894.9±60 e 3369.2±25 d 551.3±7 a 9.1±0.5 e 68.5±0.4 d
[1] 万书波, 单世华, 李春娟, 胡文广 . 我国花生安全生产现状与策略. 花生学报, 2005,34(1):1-4.
Wan S B, Shan S H, Li C J, Hu W G . Safety status and development strategy of peanut in China. J Peanut Sci, 2005,34(1):1-4 (in Chinese with English abstract).
[2] 屈宝香, 罗其友, 张晴, 周振亚 . 中国花生产业发展与食用植物油供给安全保障分析. 中国食物与营养, 2008, ( 11):13-15.
Qu B X, Luo Q H, Zhang Q, Zhou Z Y . Analysis on the development of peanut industry and the security of edible vegetable oil supply in China. Chin Food Nutr, 2008, ( 11):13-15 (in Chinese).
[3] 刘娟, 汤丰收, 张俊, 臧秀旺, 董文召, 易明林, 郝西 . 国内花生生产技术现状及发展趋势研究. 中国农学通报, 2017,33(22):13-18.
Liu J, Tang F S, Zhang J, Zang X W, Dong W Z, Yi M L, Hao X . Current status and development trends of peanut production technology in China. Chin Agric Sci Bull, 2017,33(22):13-18 (in Chinese with English abstract).
[4] 谢明惠, 陈浩梁, 张光玲, 林璐璐, 苏卫华 . 温度、土壤湿度和播种深度对花生种子萌发及幼苗生长的影响. 花生学报, 2017,46(2):52-59.
Xie M H, Chen H L, Zhang G L, Lin L L, Su W H . Effect of temperature, soil moisture and sowing depths on the seed germination and seeding growth of peanut. J Peanut Sci, 2017,46(2):52-59 (in Chinese with English abstract).
[5] Amram A, Fadidamyers A, Golan G, Nashef K, Ben-David R, Peleg Z . Effect of GA-sensitivity on wheat early vigor and yield components under deep sowing. Front Plant Sci, 2015,6:487. doi: 10.3389/fpls.2015.00487.
[6] Molatudi R L, Mariga I K . The effect of maize seed size and depth of planting on seedling emergence and seedling vigour. J Appl Sci Res, 2009,5:2234-2237.
[7] Gesch R W, Dose H L, Forcella F . Camelina growth and yield response to sowing depth and rate in the northern Corn Belt USA. Ind Crop Prod, 2017,95:416-421.
[8] Zuo Q S, Kuai J, Zhao L, Hu Z, Wu J S, Zhou G S . The effect of sowing depth and soil compaction on the growth and yield of rapeseed in rice straw returning field. Field Crops Res, 2017,203:47-54.
[9] Du L, Jiang H, Zhao G, Ren J Y . Gene cloning of Zm MYB59 transcription factor in maize and its expression during seed germination in response to deep-sowing and exogenous hormones. Plant Breed, 2017,136:834-844.
[10] 朱雅娟, 董鸣, 黄振英 . 沙埋和种子大小对固沙禾草沙鞭的种子萌发与幼苗出土的影响. 植物生态学报, 2005,29:730-739.
Zhu Y J, Dong M, Huang Z H . Effects of sand burial and seed size on seed germination and seeding emergence of Psammochloa villosa. Chin J Plant Ecol, 2005,29:730-739 (in Chinese with English abstract).
[11] Zhong S H, Shi H, Xue C, Wei N, Guo H W, Deng X W . Ethylene-orchestrated circuitry coordinates a seedling's response to soil cover and etiolated growth. Proc Natl Acad Sci USA, 2014,111:3913-3920.
[12] Özmerzi A, Karayel D, Topakci M . Effect of sowing depth on precision seeder uniformity. Biosyst Eng, 2002,82:227-230.
[13] Pang J Y, Palta P A, Rebetzke G J, Milroy S P . Wheat genotypes with high early vigour accumulate more nitrogen and have higher photosynthetic nitrogen use efficiency during early growth. Funct Plant Biol, 2014,41:215-222.
[14] 山东省农业科学院花生研究所. 花生不同播种深度研究简报. 山东农业科学, 1965, ( 2):61-63.
Institute of Peanut Science, Shandong Academy of Agricultural Sciences. Brief report on the study of different planting depths of peanut. Shandong Agric Sci, 1965, ( 2):61-63 (in Chinese).
[15] 郑婷, 樊高琼, 王秀芳, 吴中伟, 杨文钰, 毛树明, 孙万军, 宋宗奇 . 耕作方式、播深及覆土对机播套作小麦麦苗素质的影响. 农业工程学报, 2011,27(5):164-168.
Zheng T, Fan G Q, Wang X F, Wu Z W, Yang W Y, Mao S M, Sun W J, Song Z Q . Effect of tillage managements, sowing depth and soil-covering on the seedlings quality of mechanical sowing wheat under intercropping condition. Trans CSAE, 2011,27(5):164-168 (in Chinese with English abstract).
[16] 何进尚, 袁汉民, 张维军, 王小亮, 亢玲, 陈东升, 齐琨, 党根友 . 密度、播种深度对宁夏引黄灌区早熟冬小麦的影响. 江苏农业科学, 2017,45(24):63-67.
He J S, Yuan H M, Zhang W J, Wang X L, Kang L, Chen D S, Qi K, Dang G Y . Effects of density and seeding depth on precocious winter wheat in the Yellow River diversion irrigation area of Ningxia. Jiangsu Agric Sci, 2017,45(24):63-67 (in Chinese).
[17] 曹慧英, 史建国, 朱昆仑, 董树亭, 刘鹏, 赵斌, 张吉旺 . 播种深度对夏玉米冠层结构及光合特性的影响. 玉米科学, 2016,24(1):102-109.
Cao H Y, Shi J G, Zhu K L, Dong S T, Liu P, Zhao B, Zhang J W . Effects of sowing depth on canopy structure and photosynthetics characteristics of summer maize. J Maize Sci, 2016,24(1):102-109 (in Chinese with English abstract).
[18] Qin Y, Zhao Y K, Yang H, Li L, Yang J . Effects of sowing depth and sowing equipment on growth and yield of mechanized sowing maize. Asian Agric Res, 2018,10:51-53.
[19] Boote K J . Growth stages of peanut (Arachis hypogaea L.). Peanut Sci, 1982,9:35-40.
[20] Arnon D I . Copper enzymes in isolated chloroplast, poly-phenol oxidase in Beta vulgaris. Plant Physiol, 1949,24:1-15.
[21] 王爱国, 罗广华, 邵从本, 吴淑君, 郭俊彦 . 大豆种子超氧物歧化酶的研究. 植物生理学报, 1983,9:77-84.
Wang A G, Luo G H, Shao C B, Wu S J, Guo J Y . A study on the superoxide dismutase of soybean seeds. Acta Phytophysiol Sin, 1983,9:77-84 (in Chinese with English abstract).
[22] 李合生 . 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 164-165.
Li H S. Experimental Principle and Technique for Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000. pp 164-165(in Chinese).
[23] 林植芳, 李双顺, 林桂珠, 孙谷畴, 郭俊彦 . 水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系. 植物学报, 1984,26:605-615.
Lin Z F, Li S S, Lin G Z, Sun G C, Guo J Y . Super oxide dismutase activity and lipid peroxidation in relation to senescence of rice leaves. Acta Bot Sin, 1984,26:605-615 (in Chinese with English abstract).
[24] Bradford M M . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72:248-254.
[25] 曹慧英, 王丁波, 史建国, 朱昆仑, 董树亭, 刘鹏, 赵斌, 张吉旺 . 播种深度对夏玉米幼苗性状和根系特性的影响. 应用生态学报, 2015,26:2397-2404.
Cao H Y, Wang D B, Shi J G, Zhu K L, Dong S T, Liu P, Zhao B, Zhang J W . Effects of sowing depth on seeding traits and root characteristics of summer maize. Chin J Appl Ecol, 2015,26:2397-2404 (in Chinese with English abstract).
[26] Sanusan S, Polthanee A, Seripong S, Audebert A, Mouret J C . Seedling establishment and yield of direct-seeded rice under different seeding depths. Khon Kaen Agric J, 2009,37:15-22.
[27] 向达兵, 邹亮, 彭镰心, 赵钢, 范昱, 韦爽, 宋超, 刘学仪, 海来吉木 . 适宜机播深度及覆土厚度提高苦荞幼苗素质. 农业工程学报, 2014,30(12):26-33.
Xiang D B, Zou L, Peng L X, Zhao G, Fan Y, Wei S, Song C, Liu X Y, Hailai J M . Appropriate mechanical sowing depth and soil-covering thickness improving seedling quality of Tartary buckwheat. Trans CSAE, 2014,30(12):26-33 (in Chinese with English abstract).
[28] 冯伟, 朱艳, 姚霞, 田永超, 曹卫星 . 基于高光谱遥感的小麦叶和叶面积指数监测. 植物生态学报, 2009,33:34-44.
Feng W, Zhu Y, Yao X, Tian Y C, Cao W X . Monitoring leaf day weight and leaf area index in wheat with hyperspectral remote sensing. Chin J Plant Ecol, 2009,33:34-44 (in Chinese with English abstract).
[29] 张晓艳, 刘锋, 王丽丽, 封文杰, 刘淑云, 朱建华 . 花生叶面积指数与特征导数光谱的相关性. 遥感技术与应用, 2010,25:668-673.
Zhang X Y, Liu F, Wang L L, Feng W J, Liu S Y, Zhu J H . Correlations of leaf area index (LAI) with eigen derivative spectrum in peanut. Remote Sens Technol Appl, 2010,25:668-673 (in Chinese with English abstract).
[30] Liu G J, Lyu C Y, Zhang X M, Wei J, Lu Y . Effect of water supply and sowing depth on seeding emergence in two haloxylon species in the jungar basin. Pak J Bot, 2015,47:859-865.
[31] Qin F F, Xu H L, Lyu D Q, Takano T . Responses of hypocotyl elongation to light and sowing depth in peanut seedlings. Food Agric Environ, 2012,10:607-612.
[32] Gechev T S, Breusegem F V, Stone J M, Denev I, Laloi C . Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays, 2010,28:1091-1101.
[33] Gill S S, Tuteja N . Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010,48:909-930.
[34] 尚庆文, 孔祥波, 王玉霞, 徐坤 . 土壤紧实度对生姜植株衰老的影响. 应用生态学报, 2008,19:782-786.
Shang Q W, Kong X B, Wang Y X, Xu K . Effects of soil compactness on ginger plant senescence. C hin J Appl Ecol, 2008,19:782-786 (in Chinese with English abstract).
[35] 代海芳, 欧行奇, 王伟, 武英霞 . 播种深度对小麦抗寒生理的影响. 甘肃农业科技, 2010, ( 2):9-11.
Dai H F, Ou X Q, Wang W, Wu Y X . Effects of sowing depth on cold resistant physiology of wheat. Gansu Agric Sci Technol, 2010, ( 2):9-11 (in Chinese with English abstract).
[36] 杨东清, 王振林, 尹燕枰, 倪英丽, 杨卫兵, 蔡铁, 彭佃亮, 徐彩龙, 崔正勇, 刘铁宁, 徐海成 . 外源ABA和6-BA对不同持绿型小麦旗叶衰老的影响及其生理机制. 作物学报, 2013,39:1096-1104.
Yang D Q, Wang Z L, Yin Y P, Ni Y L, Yang W B, Cai T, Peng D L, Xu C L, Cui Z Y, Liu T N, Xu H C . Effects of exogenous and 6-BA on flag leaf senescence in different types of stay-green wheat and relevant physiological mechanisms. Acta Agron Sin, 2013,39:1096-1104 (in Chinese with English abstract).
[37] Rebetzke G J, Richards R A, Fettell N A, Long M, Condon, Forrester R I, Botwright T L . Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep-sown wheat. Field Crops Res, 2007,100:10-23.
[38] 宋兆伟, 郝丽珍, 黄振英, 李娜, 赵清岩 . 光照和温度对沙芥和斧翅沙芥植物种子萌发的影响. 生态学报, 2010,30:2562-2568.
Song Z W, Hao L Z, Huang Z Y, Li N, Zhao Q Y . Effects of light and temperature on the germination of Pugionium cornutum(L.) Gaertn and Pugionium dolabratum Maxim. seeds. Acta Ecol Sin, 2010,30:2562-2568 (in Chinese with English abstract).
[39] 孙小玲, 许岳飞, 马鲁沂, 周禾 . 植株叶片的光合色素构成对遮阴的响应. 植物生态学报, 2010,34:989-999.
Sun X L, Xu Y F, Ma L Y, Zhou H . A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment. Chin J Plant Ecol, 2010,34:989-999 (in Chinese with English abstract).
[40] Patel K G, Thankappan R, Mishra G P, Mandaliya V B, Kumar A, Dobaria J R . Transgenic peanut (Arachis hypogaea L.) overexpressing mtlDYT gene showed improved photosynthetic, physio-biochemical, and yield-parameters under soil-moisture deficit stress in lysimeter system. Front Plant Sci, 2017,8:1881. doi: 10.3389/fpls.2017.01881.
[41] 殷文, 冯福学, 赵财, 于爱忠, 柴强, 胡发龙, 郭瑶 . 小麦秸秆还田方式对轮作玉米干物质累积分配及产量的影响. 作物学报, 2016,42:751-757.
Yin W, Feng F X, Zhao C, Yu A Z, Chai Q, Hu F L, Guo Y . Effect of straw returning patterns on characteristics of dry matter accumulation, distribution and yield of rotation maize. Acta Agron Sin, 2016,42:751-757 (in Chinese with English abstract).
[42] 王振华, 王宏富, 刘鑫, 王彦雯, 张蕙祺, 黄甫瑞 . 播种深度对谷子出苗率及干物质积累的影响. 农学学报, 2017,7(9):6-13.
Wang Z H, Wang H F, Liu X, Wang Y W, Zhang H Q, Huang F R . Effects of sowing depth on seeding emergence rate and dry matter accumulation of millet. Chin J Agric, 2017,7(9):6-13 (in Chinese with English abstract).
[43] Yagmur M, Kaydan D . The effects of different sowing depth on grain yield and some grain yield components in wheat (Triticum aestivum L.) cultivars under dryland conditions. Afr J Biotechnol, 2010,8:196-201.
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[8] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[9] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[10] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[11] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[12] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[13] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[14] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[15] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
Full text



No Suggested Reading articles found!