Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (12): 1899-1904.doi: 10.3724/SP.J.1006.2019.91017

• RESEARCH NOTES • Previous Articles     Next Articles

Analysis method of wheat germination metabolomics based on UPLC-QTOF/ MS

Li-Na WANG,Bu-Jun WANG()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Cereal Quality Supervision and Testing Center, Ministry of Agriculture, Beijing 100081, China
  • Received:2019-02-25 Accepted:2019-06-24 Online:2019-07-19 Published:2019-07-19
  • Contact: Bu-Jun WANG E-mail:wangbujun@caas.cn
  • Supported by:
    This study was supported by the National Grain and Oil Crop Product Quality and Safety Risk Assessment Special(GJFP2018001);the Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences;the National Key Research and Development Program(2016YFF0201803)

Abstract:

To investigate the effects of different extraction methods on the extraction of wheat metabolites in germination, we established a pre-treatment and analysis method for the metabolomics samples based on UPLC-QTOF/MS. In this study, we used Zhoumai 26 grains germinated for 2 days, and designed L9(3 4) orthogonal experiments with extraction solvents, extraction methods and extraction time three levels based on UPLC-QTOF/MS. Besides, the best combination of extraction was obtained by principal component and cluster analysis: 1609 metabolic peaks were detected by 80% acetonitrile (0.1% formic acid) with shocking for 30 min, indicating that the extraction solvent plays a major role in the extraction of metabolites. A total of 92 wheat metabolites were identified in this study.

Key words: metabolomics, wheat, UPLC-QTOF/MS, extraction method, extraction solvent, orthogonal experimental

Table 1

Orthogonal test factors and levels"

水平
Level
因素Factor
提取溶剂
Extraction solvent
提取方式
Extraction method
提取时间
Extraction time (min)
1 纯水(0.1%甲酸) Water (0.1%FA) 振摇 Shock 10
2 80%甲醇(0.1%甲酸) 80% methanol (0.1%FA) 超声 Ultrasound 15
3 80%乙腈(0.1%甲酸) 80% acetonitrile (0.1%FA) 静置 Stand still 30

Table 2

Orthogonal test results"

组号
Group
试验号
Experiment number
提取溶剂
Extraction solvent
提取方式
Extraction method
提取时间
Extraction time
提取峰
Extraction peak
A 1 1 1 1 1134
2 1 2 2 1097
3 1 3 3 1069
B 4 2 3 1 1269
5 2 1 2 1448
6 2 2 3 1257
C 7 3 2 1 1275
8 3 3 2 1359
9 3 1 3 1609
K1 3300 4191 3678
K2 3974 3629 3904
K3 4243 3697 3935
R 943 562 257

Supplementary Fig. 1

Total ion current map in positive ion mode of QC sample (five replicates)"

Fig. 1

Effect of single factor on peak extraction"

Fig. 2

Different processing PCA analysis"

Supplementary Fig. 2

HCA analysis of different treatment abundances of identified metabolites"

Supplementary Table 1

Detection of identified metabolites in different treatments"

代谢物名称
Metabolite name
分类
Classification
相对分子质量
Relative mass (m z-1)
保留时间
Retention time (min)
1 2 3 4 5 6 7 8 9
Phenethylamine Amines 122.1 0.044 + + + + + + + + +
Adenine Imidazopyrimidines 136.1 0.154 + + + + + + + + +
Mesoxalate Organic acid 136 0.168 + + + + + + + + +
Aniline Amines 111.1 0.25 + + +
Methionine Amino acids 299.1 0.257 + + + + + +
2,5-Dimethylpyrazine Pyrazines 109.1 0.257 + +
1,3-Diaminopropane Polyamine 97.08 0.271 + +
PCe 36:2 Lipids 772.6 0.305 + +
PCe 38:5 Lipids 794.6 0.388 + +
DG(18:0/20:4/0:0)[iso2] Lipids 639.5 0.395 + + + + + + +
TG 54:6 (18:2/18:2/18:2) Lipids 901.7 0.401 + + + +
3-Ureidopropionate Amino acids 265.1 0.408 + + + +
L-Cysteic acid Amino acids 339 0.45 + +
Pyruvic aldehyde Aldehydes 145 0.505 + + + + + + + +
cAMP Nucleotides 347.1 0.505 + +
3-Nitro-L-Tyrosine Amino acids 249 0.511 + + + + +
O-Phospho-L-Serine Lipids 203 0.511 + + +
Methylmalonate Organic acid 136.1 0.518 + + + + + + + +
Alpha-Hydroxyisobutyric Acid Organic acid 127 0.518 + + + + + + + +
Leucine Amino acids 170.1 0.518 + + +
2-Hydroxy-4-(Methylthio)Butyric Acid Amino acids 173 0.518 +
L-2,3-Diaminopropionic Acid Amino acids 143 0.518 + +
Melibiose Carbohydrates 360.2 0.539 + + + +
D-(+)-Raffinose Carbohydrates 505.2 0.546 + + + + + + +
L-Norvaline Amino acids 118.1 0.56 + + + + + + + + +
3-Hydroxy-3-Methylglutarate Organic acid 325.1 0.566 + + + + + + + + +
Tyrosine Amino acids 182.1 0.573 + + + + + +
1-Naphthylamine Amines 144.1 0.573 + + + + + + + +
Methyl Acetoacetate Organic acid 117.1 0.58 + +
(R)-Malate Organic acid 152.1 0.58 + + + + + +
Indole Indoles 118.1 0.58 + + + + + + + + +
Tryptophan Amino acids 205.1 0.587 + + + + + + + + +
1-Aminocyclopropane-1-Carboxylate Amino acids 124 0.594 + + + + + +
Dihydroxyfumaric Acid Organic acid 187 0.608 + +
4-Guanidinobutanoate Amines 146.1 0.608 + + + + + + + +
Ascorbate Vitamins 199 0.608 + + +
Uridine 5'-Diphospho-N-Acetylgalactosamine Amino Sugars 608.1 0.621 + + +
Prenol Fatty alcohols 104.1 0.642 + + + +
3-Hydroxyanthranilate Organic acid 307.1 0.656 +
Betaine Amines 235.2 0.67 +
Trehalose Carbohydrates 360.2 0.676 + +
D-Fructose 6-Phosphate Carbohydrates 261 0.704 + + +
Succinic Acid Organic acid 136.1 0.731 + + + + +
Glycolaldehyde Dimer Aldehydes 98.98 0.731 + + + + + + +
Adenosine Nucleosides 268.1 1.669 + + + +
S-Carboxymethyl-L-Cysteine Amino acid 218 1.752 + + + + + +
2'-Deoxyguanosine Nucleotides 268.1 2.064 + + + + +
PEp 40:4 Lipids 797.6 2.586 + +
Phenylalanine Amino acids 188.1 2.855 + + + + + + + + +
C20DH Sphingomyelin Lipids 761.7 3.125 +
Riboflavin Vitamins 377.1 3.27 +
19:0 Cholesteryl ester Lipids 689.6 3.655 + +
PC 36:5-A Lipids 797.6 3.862 + +
Cholesteryl Acetate Lipids 857.7 4.655 + +
PC 36:2 Lipids 803.6 4.834 + +
Tricosanoic Acid Fatty acids 393.3 6.056 + +
Desmosterol Lipids 385.3 6.812 + +
Hexadecanoic Acid Lipids 274.3 6.977 + + + + + + +
Myristic Acid Lipids 251.2 7.22 + + + +
Heptadecanoic Acid Lipids 288.3 7.661 + + + + + + +
Lysine Amino acids 293.2 8.729 + +
Acetoin Ketones 177.1 8.915 + + + + + + +
Sphinganine Amines 302.3 8.949 + + + + + +
Valine Amino acids 235.2 9.928 + + +
MG (16:0/0:0/0:0) Lipids 353.3 10.21 + + + + + +
LPE 16:0 Lipids 454.3 10.68 + +
LPC 18:1 Lipids 522.4 11.19 + + + + +
Guanine Imidazopyrimidines 152.1 11.21 + +
Docosanoic Acid Fatty acyls 358.4 11.8 + + + + + + +
13Z-Docosenoic Acid Lipids 356.4 12.04 + + +
LPC 18:0 Lipids 524.4 12.6 + + + +
LPC 20:1 Lipids 550.4 12.92 + +
N-Palmitoyl-Sphingosine Lipids 560.5 14.38 + + +
Alpha-Tocopherol Vitamins 431.4 14.53 + + + +
Deoxycorticosterone Acetate Lipids 395.2 14.66 + + + + +
Hexadecanol Fatty alcohols 265.3 14.76 + + + +
Leukotriene B4 Lipids 337.2 15.22 + + + + + + + + +
N-(Octadecanoyl)-Dihydroceramide Lipids 568.6 15.25 + + + + + + + +
N-Acetyl-Dl-Glutamic Acid Amino acids 207.1 15.3 + + + + +
LPE 20:5 Lipids 517.3 15.51 + + +
3-(2-Hydroxyphenyl)Propanoate Organic acid 167.1 15.69 + + + +
Bis(2-Ethylhexyl)Phthalate Organic acid 391.3 15.7 + + + + + + + + +
PC 34:3 Lipids 778.5 15.92 + +
Azelaic acid Organic acid 189.1 16.8 + + + + +
PC 32:0 Lipids 756.6 17.25 + + +
PE 40:5 Lipids 794.6 17.64 + +
1,2-Dipalmitoyl-Sn-Glycerol Lipids 591.5 17.73 + + + + + +
9Z-Hexadecenoic Acid Lipids 277.2 17.88 + + + + + +
PC 34:0 Lipids 784.6 18.4 + + + + + +
PE 34:1 Lipids 740.5 18.44 + + + + + +
PE 34:2 Lipids 716.5 18.55 + + +
4-Aminobutanoate Organic acid 207.1 18.66 + + +
[1] Scalbert A, Brennan L, Fiehn O, Hankemeier T, Kristal B S, Ommen B V, Pujos-Guillot E, Verheij E, Wishart D, Wopereis S . Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metab Offic J Metab Soc, 2009,5:435-458.
[2] Keurentjes J J B, Fu J, Vos C H R D, Lommen A, Hall R D, Bino R J, van der Plas L H, Jansen R C, Vreugdenhil D, Koornneef M . The genetics of plant metabolism. Nat Genet, 2006,38:842-849.
doi: 10.1038/ng1815
[3] 漆小泉, 王玉兰, 陈晓亚 . 植物代谢组学——方法与应用. 北京: 化学工业出版社, 2011. pp 3, 60.
Qi X Q, Wang Y L, Chen X Y. Plant Metabolomics: Methods and Applications. Beijing: Chemical Industry Press, 2011. pp 3, 60 (in Chinese).
[4] Tulipani S, Llorach R, Urpi-Sarda M, Andres-Lacueva C . Comparative analysis of sample preparation methods to handle the complexity of the blood fluid metabolome: when less is more. Anal Chem, 2013,85:341-848.
doi: 10.1021/ac302919t
[5] Want E J, O’Maille G, Smith C A, Brandon T R, Uritboonthai W, Qin C, Trauger S A, Siuzdak G . Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal Chem, 2006,78:743-752.
doi: 10.1021/ac051312t
[6] Fan T W M . Considerations of Sample Preparation for Metabolomics Investigation. Methods Pharmacol Toxicol, 2012,17:7-27.
[7] Duportet X, Aggio R B M, Carneiro S, Villas-Bôas S G . The biological interpretation of metabolomic data can be misled by the extraction method used. Metabolomics, 2012,8:410-421.
doi: 10.1007/s11306-011-0324-1
[8] t’Kindt R, Morreel K, Deforce D, Boerjan W, Van Bocxlaer J . Joint GC-MS and LC-MS platforms for comprehensive plant metabolomics: repeatability and sample pre-treatment. J Chromatogr B, Analyt Technol Biomed Life Sci, 2009,877:3572-3580.
doi: 10.1016/j.jchromb.2009.08.041
[9] Theodoridis G, Gika H, Franceschi P, Caputi L, Arapitsas P, Scholz M, Masuero D, Wehrens R, Vrhovsek U, Mattivi F . LC- MS based global metabolite profiling of grapes: solvent extraction protocol optimisation. Metabolomics, 2012,8:175-185.
doi: 10.1007/s11306-011-0298-z
[10] Creydt M, Arndt M, Hudzik D, Fischer M . Plant Metabolomics: Evaluation of Different extraction parameters for nontargeted UPLC-ESI-QTOF-mass spectrometry at the example of white asparagus officinalis. J Agric Food Chem, 2018,66:12876-12887.
doi: 10.1021/acs.jafc.8b06037
[11] 李思钒 . 不同代谢物提取方法对扬稻6号和武运粳7号水稻代谢组学研究结果的影响. 上海交通大学硕士学位论文, 上海, 2015.
Li S F . Effect of Different Sample Extraction Methouds on the Metabolomics Study in Yangdao 6 and Wuyungeng 7 Rice. MS Thesis of Shanghai JiaoTong University, Shanghai, China, 2015 (in Chinese with English abstract).
[12] t’Kindt R, De Veylder L, Storme M, Deforce D, Van Bocxlaer J . LC-MS metabolic profiling of Arabidopsis thaliana plant leaves and cell cultures: Optimization of pre-LC-MS procedure parameters. J Chromatogr B, 2008,871:37-43.
doi: 10.1016/j.jchromb.2008.06.039
[13] Cara P . Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry. J Chromatogr B, Analyt Technol Biomed Life Sci, 2003,2:263-275.
[14] Stephen J B . Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Anal Chem, 2009,9:3285-3296.
[15] Bushra S . Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules(Basel, Switzerland), 2009,6:2167-2180.
[16] 包雨卓, 杨宁, 苍晶, 冯明芳, 吕岩, 彭瞰看, 田宇, 张达, 王军虹, 孟婧 . 冬小麦东农冬麦1号在不同温度下的代谢组学差异分析. 麦类作物学报, 2017,37:647-655.
Bao Y Z, Yang N, Cang J, Feng M F, Lyu Y, Peng K K, Tian Y, Zhang D, Wang J H, Meng J . Metabolomics analysis of winter wheat Dongnongdongmai 1 at different temperatures. J Triticeae Crops, 2017,37:647-655 (in Chinese with English abstract).
[17] Guo R, Yang Z, Li F, Yan C, Zhong X, Liu Q, Xia X, Li H, Zhao L . Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biol, 2015,15:170.
doi: 10.1186/s12870-015-0546-x
[18] 张月, 吕岱竹, 林静凌, 李建国 . 高效液相色谱法测定小麦粉和大米粉中的氯啶菌酯. 农药, 2013,52(1):48-49.
Zhang Y, Lyu Y Z, Lin J L, Li J G . Determination of chlorfenapyr in wheat flour and rice flour by high performance liquid chromatography. Pesticides, 2013,52(1):48-49 (in Chinese with English abstract).
[19] Beccari G, Arellano C, Covarelli L, Tini F, Sulyok M, Cowger C . Effect of wheat infection timing on Fusarium head blight causal agents and secondary metabolites in grain. Int J Food Microbiol, 2019,290:214-225.
doi: 10.1016/j.ijfoodmicro.2018.10.014
[20] Beccari G, Colasante V, Tini F, Senatore M, Prodi A, Sulyok M, Covarelli L . Causal agents of Fusarium head blight of durum wheat (Triticum durum Desf.) in central Italy and their in vitro biosynthesis of secondary metabolites. Food Microbiol, 2017,70:17-27.
doi: 10.1016/j.fm.2017.08.016
[21] 胡贲, 赵明月, 段礼新, 王燃, 李锋, 翟妞, 许国旺, 彭孝军, 金立锋 . 基于超高压液相色谱-四极杆串联飞行时间质谱技术的烟草代谢组学分析方法. 分析试验室, 2016,35:502-505.
Hu B, Zhao M Y, Duan L X, Wang R, Li F, Zhai N, Xu G W, Peng X J, Jin L F . Tobacco metabolomics analysis method based on ultra-high pressure liquid chromatography-quadrupole tandem time-of-flight mass spectrometry. Anal Lab, 2016,35:502-505 (in Chinese with English abstract).
[22] Kim H K, Verpoorte R . Sample preparation for plant metabolomics. Phytochem Anal, 2010,12:4-13.
[23] 明道绪 . 田间试验与统计分析(第3版). 北京: 科学出版社, 2013. pp 185-190.
Ming D X. Field Experiments and Statistical Analysis, 3rd edn. Beijing: Science Press, 2013. pp 185-190(in Chinese).
[24] Martin A, Pawlus A, M. Jewett E, Wyse D, Angerhofer C, Hegeman A . Evaluating solvent extraction systems using metabolomics approaches. RSC Adv, 2014,4:26325.
doi: 10.1039/C4RA02731K
[25] 王曦 . 黄芪种子萌发及后萌发时期的代谢变化分析. 东北林业大学博士学位论文, 黑龙江哈尔滨, 2016.
Wang X . Analysis of Metabolic During Seed Germination and Post-Germination of Astragalus Monghohcus. PhD Dissertation of Graduate School of Northeast Forestry University, Harbin, Heilongjiang, China, 2016 (in Chinese with English abstract).
[26] 许国旺, 路鑫, 杨胜利 . 代谢组学研究进展. 中国医学科学院学报, 2007,29:701-711.
Xu G W, Lu X, Yang S L . Progress in metabolomics research. J Chin Acad Med Sci, 2007,29:701-711 (in Chinese with English abstract).
[27] Fukusaki E, Kobayashi A . Plant metabolomics: potential for practical operation. J Biosci Bioengineer, 2005,100:347-354.
[28] 阿基业, 何骏, 孙润彬 . 代谢组学数据处理——主成分分析十个要点问题. 药学学报, 2018,53:929-937.
A J Y, He J, Sun R B . Metabolomics data processing: ten key points in principal component analysis. J Pharmac Sci, 2018,53:929-937 (in Chinese with English abstract).
[29] 李思钒, 胡朝阳, 宋越, 詹舜安, 石建新 . 不同提取液配方对水稻种子代谢组学研究的影响. 中国农机化学报, 2017,38(2):108-113.
Li S F, Hu C Y, Song Y, Zhan S A, Shi J X . Effects of different extract formulations on rice seed metabolomics research. Chin J Agric Mechanizat, 2017,38(2):108-113 (in Chinese with English abstract).
[30] Evans A M, DeHaven C D, Barrett T, Mitchell M, Milgram E . Integrated, Nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem, 2009,81:6656-6667.
doi: 10.1021/ac901536h
[31] Oikawa A, Matsuda F, Kusano M, Okazaki Y, Saito K . Rice metabolomics. Rice, 2008,1:63-71.
doi: 10.1007/s12284-008-9009-4
[32] Díaz R, Pozo O J, Sancho J V, Hernández F . Metabolomic approaches for orange origin discrimination by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Chem, 2014,157:84-93.
doi: 10.1016/j.foodchem.2014.02.009
[33] Bondia-Pons I, Savolainen O, Törrönen R, Martinez J A, Poutanen K, Hanhineva K . Metabolic profiling of Goji berry extracts for discrimination of geographical origin by non-targeted liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Res Int, 2014,63:132-138.
doi: 10.1016/j.foodres.2014.01.067
[34] Hrbek V, Rektorisova M, Chmelarova H, Ovesna J, Hajslova J . Authenticity assessment of garlic using a metabolomic approach based on high resolution mass spectrometry. J Food Compos Anal, 2018,67:19-28.
doi: 10.1016/j.jfca.2017.12.020
[35] Doppler M, Kluger B, Bueschl C, Schneider C, Krska R, Delcambre S, Hiller K, Lemmens M, Schuhmacher R . Stable isotope-assisted evaluation of different extraction solvents for untargeted metabolomics of plants. Int J Mol Sci, 2016,17:1017.
doi: 10.3390/ijms17071017
[36] Han C, Zhen S, Zhu G, Bian Y, Yan Y . Comparative metabolome analysis of wheat embryo and endosperm reveals the dynamic changes of metabolites during seed germination. Plant Physiol Biochem, 2017,115:320-327.
doi: 10.1016/j.plaphy.2017.04.013
[37] Aharoni A, De Vos R, Verhoeven H, Maliepaard C, Kruppa G, Bino R, Goodenowe D . Nontargeted Metabolome analysis by use of fourier transform ion cyclotron mass spectrometry. Omics, 2002,6:217-234.
doi: 10.1089/15362310260256882
[38] 常玉玮, 王国栋 . LC-MS在植物代谢组学分析中的应用. 生命科学, 2015,27:978-985.
Chang Y W, Wang G D . Application of LC-MS in plant metabolomics analysis. Life Sci, 2015,27:978-985 (in Chinese with English abstract).
[39] 孔宏伟, 戴伟东, 许国旺 . 基于液相色谱-质谱联用的代谢组学研究中代谢物的结构鉴定进展. 色谱, 2014,32:1052-1057.
doi: 10.3724/SP.J.1123.2014.05017
Kong H W, Dai W D, Xu G W . Progress in the structural identification of metabolites in metabolomics based on liquid chromatography-mass spectrometry. Chromatogr, 2014,32:1052-1057 (in Chinese with English abstract).
doi: 10.3724/SP.J.1123.2014.05017
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[6] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[7] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[8] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[9] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[10] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[11] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[12] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[13] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
[14] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[15] LUO Jiang-Tao, ZHENG Jian-Min, PU Zong-Jun, FAN Chao-Lan, LIU Deng-Cai, HAO Ming. Chromosome transmission in hybrids between tetraploid and hexaploid wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!