Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (12): 1891-1898.doi: 10.3724/SP.J.1006.2019.94016

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Establishment and applicant of near-infrared reflectance spectroscopy models for predicting main fatty acid contents of single seed in peanut

Jian-Guo LI,Xiao-Meng XUE,Zhao-Hua ZHANG,Zhi-Hui WANG,Li-Ying YAN,Yu-Ning CHEN,Li-Yun WAN,Yan-Ping KANG,Dong-Xin HUAI(),Hui-Fang JIANG,Yong LEI(),Bo-Shou LIAO   

  1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, Hubei, China
  • Received:2019-05-15 Accepted:2019-06-20 Online:2019-07-16 Published:2019-07-16
  • Contact: Dong-Xin HUAI,Yong LEI E-mail:dxhuai@caas.cn;leiyong@caas.cn
  • Supported by:
    This study was supported by the Mars-China High Oleic Acid Peanut Breeding Project(MARS-China HOAP 2013-2018);the National Natural Science Foundation of China(31671734);the National Natural Science Foundation of China(31461143022);the National Natural Science Foundation of China(31770250);the National Natural Science Foundation of China(31371662);the Fundamental Research Funds for Central Non-profit Scientific Institution(Y2018PT52);the China Agriculture Research System(CARS-13)

Abstract:

Profile of fatty acid is the main factor determining the nutritional value and shelf life of peanut. High oleate peanut has been increasingly favored by customers and peanut processing enterprises, as it provides a prolonged shelf-life and a beneficial effect on human health. Therefore, creating high oleate peanut cultivar is an important objective for peanut breeding. Developing a nondestructive method which could detect the fatty acid composition in peanut rapidly, efficiently and accurately is an important technical support for accelerating the processing. In this study, models for predicting the contents of main fatty acids (oleic acid, linoleic acid and palmitic acid) in a single peanut seed were built up using near-infrared reflectance spectroscopy (NIRS). The coefficient of multiple determination (R 2) and the root mean squared error of external calibration (RMSECV) of prediction models were 0.907 and 3.463 for oleic acid, 0.918 and 2.824 for linoleic acid, 0.824 and 0.782 for palmitic acid, respectively. One hundred peanut seeds were analyzed by both NIR and gas chromatography (GC) to validate the accuracy of the prediction models. The correlation coefficients of oleic acid, linoleic acid and palmitic acid between NIR values and GC values were 0.88, 0.90, and 0.71, respectively, suggesting that these models could accurately predict the contents of the three main fatty acids in a single peanut seed. Furthermore, based on these prediction models, a breeding method of high oleate peanut without assistance of molecular marker was developed, and a high oleate peanut cultivar Zhonghua 215 was successfully bred.

Key words: single peanut seed, fatty acid, near infrared model, high oleic acid, breeding method

Fig. 1

Near infrared reflectance spectroscopy machine Unity- SpectrastarXL used in this experiment"

Fig. 2

Spectral of all samples"

Table 1

Contents of oleic acid, linoleic acid and palmitic acid in single peanut seed used for modeling"

棕榈酸(C16:0)含量
Palmitic acid content
油酸(C18:1)
含量
Oleic acid
content
亚油酸(C18:2)含量
Linoleic acid content
样本数
Sample size
1013 1195 1202
最小值Minimum (%) 5.9 32.8 0.7
最大值Maximum (%) 16.6 80.8 43.9
均值Mean (%) 11.1 51.8 26.5

Fig. 3

Determination coefficient of prediction of oleic acid (A), linoleic acid (B), and palmitic acid (C) contents in single intact peanut seed by near-infrared reflectance (NIR) spectroscopy"

Suppementary Table 1

Results from GC and NIR of oleic acid, linoleic acid and palmitic acid contents in single peanut seed"

样品
Sample
C18:1 C18:2 C16:0
NIR GC NIR GC NIR GC
1 52.9 49.9 26.0 31.9 11.1 10.4
2 80.0 74.1 1.6 9.2 6.7 6.5
3 70.3 60.0 10.1 21.6 8.5 10.5
4 73.5 69.9 8.0 14.3 7.8 7.5
5 68.5 64.6 11.4 14.3 8.5 8.1
6 67.0 49.7 13.3 29.1 8.7 8.5
7 69.2 59.9 11.5 20.8 8.5 10.3
8 64.4 39.1 14.4 35.5 9.7 13.9
9 81.2 69.7 1.3 12.3 6.1 6.4
10 83.7 69.6 -1.7 11.3 5.6 9.2
11 82.4 74.6 -0.5 9.6 5.9 7.7
12 67.8 54.9 13.5 23.5 8.7 10.6
13 54.4 49.7 24.4 29.9 11.1 9.4
14 89.5 85.4 -5.8 1.4 4.8 5.8
15 88.2 85.1 -4.9 1.2 5.1 5.1
16 57.1 44.7 22.8 32.5 10.3 15.5
17 86.2 79.8 -3.6 2.5 5.3 6.9
18 93.3 79.8 -9.2 2.4 3.9 7.0
19 55.7 38.5 23.8 37.2 10.4 15.6
20 75.0 69.6 6.4 12.8 7.1 6.1
21 91.8 79.7 -7.7 2.1 4.5 7.5
22 66.7 54.9 13.7 24.3 8.6 12.6
23 60.3 44.8 20.3 33.0 10.0 13.8
24 59.2 49.8 20.1 32.0 10.2 9.9
25 62.0 44.8 17.5 31.1 9.3 11.0
26 90.8 79.7 -6.9 2.0 5.2 6.8
27 81.1 74.8 1.1 7.0 6.3 7.6
28 68.2 59.9 12.3 21.2 9.2 8.9
29 71.8 55.0 9.6 25.8 8.2 8.8
30 77.4 69.6 4.5 11.7 7.1 6.4
31 74.7 74.2 5.9 10.6 7.7 6.8
32 85.2 84.9 -2.1 2.1 5.7 6.0
33 83.8 74.3 -1.8 8.8 6.1 5.6
34 66.1 45.0 25.3 32.3 10.5 12.9
35 71.4 59.8 9.5 20.8 8.2 7.4
36 73.3 69.8 7.6 11.9 8.1 8.0
37 61.1 54.8 18.5 26.1 10.1 8.0
38 72.2 54.9 8.5 26.1 7.7 10.6
39 90.9 79.5 -7.9 2.5 4.4 6.2
40 86.5 44.9 -4.2 34.2 5.7 11.7
41 51.3 39.5 27.2 40.6 12.2 10.6
42 48.4 38.9 29.9 41.7 12.2 10.9
43 79.9 74.4 1.7 7.6 6.6 5.9
44 54.6 45.0 23.9 36.2 11.2 10.0
45 70.3 55.0 11.8 24.0 8.2 12.7
46 64.3 54.9 16.7 25.1 9.5 11.1
47 69.3 64.9 11.4 18.4 8.6 6.5
48 74.1 65.0 6.9 14.6 7.6 7.4
49 73.0 69.6 7.9 13.6 7.5 6.6
50 58.5 49.6 20.2 31.2 10.0 9.8
51 91.2 79.7 -7.6 2.4 4.6 7.5
52 87.0 79.7 -3.6 2.3 6.0 7.8
53 72.2 64.7 8.6 16.5 7.7 9.2
54 69.4 59.9 10.7 21.4 8.3 9.7
55 49.9 45.0 28.5 36.5 11.9 10.5
56 91.8 79.9 -9.2 2.4 4.3 6.3
57 70.5 38.7 10.0 36.9 8.0 12.7
58 73.7 59.8 4.0 20.4 6.5 8.9
59 87.7 79.6 -4.8 2.3 5.4 7.1
60 67.0 60.0 13.6 22.5 8.7 10.9
61 66.1 49.8 14.7 29.7 9.2 12.8
62 82.9 85.6 -0.4 1.4 6.0 6.3
63 81.6 85.6 -0.4 1.4 6.0 6.3
64 64.4 54.8 16.1 26.8 9.5 9.2
65 78.2 74.4 3.7 10.2 7.0 8.3
66 83.6 85.3 -1.4 1.4 5.8 5.6
67 89.3 85.6 -6.4 1.1 5.0 5.3
68 59.5 44.6 19.9 33.9 10.5 11.1
69 58.9 44.9 21.1 35.4 10.0 10.3
70 45.6 39.8 32.6 40.6 13.3 10.8
71 71.6 64.9 8.6 18.2 8.3 8.4
72 72.7 64.8 7.7 16.1 7.9 9.5
73 80.2 74.2 0.8 8.8 6.4 5.9
74 84.2 85.1 -0.6 1.4 5.8 6.6
75 76.0 69.9 4.8 12.4 6.8 8.3
76 87.5 64.7 -5.0 12.5 5.1 7.9
77 88.2 85.6 -4.8 1.7 4.9 5.4
78 60.8 38.7 18.1 37.0 9.6 11.3
79 54.0 38.7 24.6 37.9 11.4 12.5
80 58.6 44.8 20.7 32.1 10.7 12.2
81 50.6 39.7 28.8 40.5 11.9 9.6
82 53.9 49.9 25.0 28.3 10.8 7.6
83 84.9 84.8 -1.8 1.6 5.4 6.5
84 56.9 50.0 23.2 30.0 10.3 9.1
85 71.1 74.2 10.2 9.4 8.2 8.0
86 75.2 69.7 6.9 14.7 7.4 7.2
87 62.6 54.8 17.5 26.4 9.5 9.2
88 68.7 64.8 11.4 17.9 8.4 7.3
89 73.7 65.0 7.5 16.7 7.8 7.6
90 72.6 59.8 9.1 20.5 7.8 11.3
91 59.7 39.8 20.5 35.4 9.8 13.6
92 59.8 49.6 19.6 28.1 10.2 11.3
93 89.8 79.9 -6.8 2.5 5.2 6.3
94 66.8 59.9 14.2 19.7 8.9 8.6
95 86.5 84.8 -4.1 1.6 5.7 6.4
96 75.0 69.8 6.1 14.5 7.4 7.4
97 67.3 54.9 13.4 24.1 9.1 12.5
98 77.4 74.1 4.6 10.4 6.8 7.0
99 69.1 50.0 12.0 29.2 8.6 11.2
100 68.4 59.9 12.4 20.3 8.8 9.3

Fig. 4

Correlation coefficient of results from GC and NIR of oleic acid (A), linoleic acid (B), and palmitic acid (C) contents in single intact peanut seed C18:1: oleic acid; C18:2: linoleic acid; C16:0: palmitic acid."

Suppementary Table 2

F2 seeds with over 70% oleic acid content detected by NIR for single peanut seed"

样品
Sample
油酸
C18:1 (%)
样品
Sample
油酸
C18:1 (%)
6-1 82.9 4-13 73.8
2-11 82.2 9-10 73.4
10-6 81.2 5-12 73.3
8-12 80.0 3-16 73.2
3-3 79.7 9-20 73.2
11-31 79.2 5-1 73.2
6-2 78.8 4-12 72.8
7-18 78.3 3-16 72.6
8-8 77.7 10-15 72.5
11-42 76.8 9-11 72.2
4-11 76.2 11-8 72.1
4-14 75.5 4-7 72.1
4-2 75.5 8-19 71.8
5-7 75.1 9-21 71.5
8-4 74.8 4-15 71.3
1-11 74.7 1-16 70.7
7-3 74.4 6-29 70.5
3-11 74.2 2-17 70.3
12-21 74.0 10-7 70.1

Suppementary Table 3

F3 seeds with over 75% oleic acid content detected by NIR for single peanut seed"

样品
Sample
油酸
C18:1 (%)
样品
Sample
油酸
C18:1 (%)
样品
Sample
油酸
C18:1 (%)
样品
Sample
油酸
C18:1 (%)
2-11-2 86.1 8-8-4 83.3 7-3-30 81.6 7-3-4 79.7
9-10-14 85.6 8-8-12 83.2 7-18-22 81.5 8-12-31 79.6
8-12-4 85.6 7-18-2 83.2 7-18-1 81.5 6-2-17 79.5
8-8-14 85.6 3-16-5 83.1 8-8-5 81.5 4-13-2 79.5
2-11-11 85.4 6-1-3 83.1 4-11-1 81.4 3-11-13 79.5
8-12-3 85.3 4-14-23 83.1 11-42-59 81.3 5-12-10 79.4
3-11-4 85.1 8-4-4 83.0 12-21-14 81.3 4-2-8 79.3
9-10-4 85.1 5-12-32 83.0 5-12-40 81.3 4-11-12 79.3
5-12-3 84.9 6-1-22 82.9 3-16-16 81.3 11-31-27 79.3
11-42-2 84.8 9-10-1 82.9 8-4-10 81.3 7-18-32 79.3
10-6-4 84.8 3-3-3 82.9 9-10-20 81.2 4-11-25 79.3
1-11-5 84.7 6-1-23 82.8 11-42-25 81.1 4-13-4 79.1
3-3-2 84.7 4-11-4 82.7 3-16-22 81.1 4-13-7 79.0
5-12-1 84.6 6-2-13 82.7 4-13-14 81.1 8-12-9 78.9
12-21-15 84.6 9-10-5 82.7 4-13-3 81.0 4-13-33 78.9
2-11-5 84.6 11-42-12 82.7 9-10-25 81.0 3-16-45 78.8
10-6-3 84.5 5-12-2 82.6 7-3-1 81.0 3-16-30 78.7
6-1-1 84.4 11-31-22 82.5 4-13-30 81.0 4-13-1 78.7
1-11-4 84.4 4-11-7 82.5 8-12-14 80.9 5-7-21 78.6
4-11-10 84.3 8-12-23 82.4 4-2-1 80.9 7-3-9 78.5
4-2-5 84.2 9-10-33 82.4 10-6-10 80.9 7-3-27 78.5
9-20-4 84.2 7-18-12 82.3 11-31-2 80.8 3-11-2 78.0
1-11-3 84.2 9-21-1 82.3 9-10-27 80.8 11-31-4 78.0
8-8-1 84.2 4-14-5 82.3 9-10-15 80.7 3-11-1 78.0
2-11-3 84.1 11-31-7 82.2 4-2-9 80.7 9-10-26 77.9
2-11-1 84.1 7-18-10 82.2 8-12-7 80.7 3-16-35 77.6
14-14-2 84.1 4-13-24 82.2 11-31-26 80.7 4-14-4 77.6
8-8-17 84.1 5-12-8 82.2 11-31-14 80.7 3-16-24 77.4
4-14-15 84.1 6-2-2 82.2 11-42-19 80.5 11-31-30 77.3
11-31-15 84.1 6-2-9 82.1 3-3-8 80.5 5-12-27 76.5
1-11-1 84.1 9-10-10 82.1 11-31-8 80.5 4-2-42 76.4
2-11-4 84.0 9-10-6 82.1 10-6-18 80.5 4-14-31 76.4
8-8-2 84.0 4-11-5 82.1 2-11-28 80.5 5-7-19 76.3
3-3-5 83.9 6-2-6 82.0 4-11-41 80.3 11-31-28 76.1
9-20-2 83.9 6-1-10 82.0 6-1-7 80.3 8-8-18 75.9
5-7-2 83.9 4-11-3 81.9 4-2-2 80.3 4-13-17 75.8
6-1-4 83.9 6-1-27 81.9 4-13-10 80.3 12-21-10 75.8
10-6-2 83.8 8-4-8 81.9 4-13-34 80.1 6-2-32 75.6
1-11-2 83.7 4-14-14 81.8 9-10-9 80.1 3-3-31 75.6
11-31-3 83.7 8-8-3 81.8 11-42-16 80.1 9-10-16 75.6
9-10-12 83.7 7-3-2 81.7 11-42-8 80.1 3-11-24 75.6
9-10-3 83.6 11-42-1 81.7 12-21-29 80.0 11-31-12 75.5
9-20-3 83.5 7-3-10 81.7 7-18-5 79.9 3-3-19 75.5
12-21-2 83.4 4-14-3 81.7 11-31-17 79.9 5-12-24 75.4
8-12-5 83.4 12-21-1 81.7 4-14-16 79.8 11-42-54 75.2
3-3-1 83.4 11-42-7 81.7 4-14-10 79.8 9-10-37 75.2
6-1-2 83.3 12-21-18 81.6 4-2-35 79.7 9-10-38 75.1
12-21-4 83.3 8-12-34 81.6 4-13-18 79.7 9-10-22 75.0
4-14-1 83.3 6-2-5 81.6 7-3-20 79.7 1-11-9 75.0

Table 2

Oleic acid content (%) in F4 detected by NIR for single peanut seed and by GC for mixed seeds"

2-11-3a 2-11-28 4-11-7 4-14-1 6-2-6 8-8-3 9-10-9 10-6-4 11-31-15 12-21-18
1b 87.5 86.7 77.7 81.2 78.8 78.7 76.5 76.9 75.8 77.0
2 80.3 78.2 76.5 76.7 81.2 76.7 78.7 78.0 79.2 76.6
3 84.2 76.2 76.8 76.4 75.5 76.1 75.4 81.5 79.7 82.9
4 80.6 83.4 80.0 79.0 78.3 80.0 85.8 75.4 76.0 75.8
5 78.1 76.2 77.6 80.8 75.1 78.2 83.7 77.5 86.1 77.3
6 76.3 78.0 79.0 75.9 82.5 76.6 77.8 75.9 75.4 76.5
7 82.0 83.9 77.9 76.7 78.0 81.5 77.5 76.4 76.0 79.7
8 76.7 76.2 77.3 77.5 77.8 77.7 75.2 77.6 81.2 76.6
9 76.1 82.5 82.6 84.1 75.0 79.3 77.5 84.7 83.6 82.9
10 85.1 78.9 80.1 78.3 77.8 76.2 77.5 75.0 79.5 82.2
GCc 82.0 80.1 80.4 81.7 81.0 81.3 79.7 79.8 80.5 81.2

Table 3

Genotype of AhFAD2 genes in F4 lines"

F4株系 F4 lines 基因型Genotype
2-11-3 aabb
2002/11/28 aabb
2004/11/7 aabb
4-14-1 aabb
2006/2/6 aabb
2008/8/3 aabb
2009/10/9 aabb
2010/6/4 aabb
11-31-15 aabb
12-21-18 aabb
[1] 万书波 . 我国花生产业面临的机遇与科技发展战略. 中国农业科技导报, 2009,11(1):7-12.
Wan S B . Opportunities facing peanut industry in China and strategies for its science and technology development. J Agric Sci Technol, 2009,11(1):7-12 (in Chinese with English abstract).
[2] 刘娟, 汤丰收, 张俊, 臧秀旺, 董文召, 易明林, 郝西 . 国内花生生产技术现状及发展趋势研究. 中国农学通报, 2017,33(22):13-18.
Liu J, Tang F S, Zhang J, Zang X W, Dong W Z, Yi M L, Hao X . Current status and development trends of peanut production technology in China. Chin Agric Sci Bull, 2017,33(22):13-18 (in Chinese with English abstract).
[3] 郭建斌 . 花生含油量及脂肪酸组成的QTL分析. 华中农业大学硕士学位论文, 湖北武汉, 2016.
Guo J B . QTL Analysis for Oil Content and Fatty Acid Traits in Peanut (Arachis hypogaea L.). MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016 (in Chinese with English abstract).
[4] Pandey M K, Wang M L, Qiao L X, Feng S P, Khera P, Wang H, Tonnis B, Barkley N A, Wang J P, Holbrook C C, Culbreath A K, Varshney R K, Guo B Z . Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut(Arachis hypogaea L.). BMC Genetics, 2014,15(1):133.
doi: 10.1186/s12863-014-0133-4 pmid: 25491595
[5] Yin D, Deng S, Zhan K, Cui D . High-oleic peanut oils produced by hpRNA-mediated gene silencing of oleate desaturase. Plant Mol Biol Rep, 2007,25:154-163.
doi: 10.1007/s11105-007-0017-0
[6] 张晓科, 王珊珊, 曲伟华 . 近红外定量分析自然风干花生油酸和亚油酸及棕榈酸含量的探索. 农业开发与装备, 2017, ( 7):76-77.
Zhang X K, Wang S S, Qu W H . Quantitative analysis of natural air-dried arachidonic acid, linoleic acid and palmitic acid by near infrared spectroscopy. Agric Dev Equip, 2017, ( 7):76-77 (in Chinese with English abstract).
[7] 王传堂 . 高油酸花生. 上海: 上海科学出版社, 2017. pp 113-114.
Wang C T. High Oleic Acid Peanuts. Shanghai: Shanghai Scientific and Technical Publishers, 2017. pp 113-114(in Chinese).
[8] Idriss M R. 基于高光谱成像技术和近红外光谱技术测定花生种子及花生油中油酸和亚油酸含量的方法研究. 中国农业科学院博士学位论文, 北京, 2016.
Idriss M R . Determination of Oleic Acid and Linoleic Acid in Peanut Seeds and Peanut Oil by High Spectral Imaging and Near Infrared Spectroscopy. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2016 (in Chinese with English abstract).
[9] Chamberlin K D, Melouk H A, Madden R, Dillwith J W, Bannore Y, Rassi Z E, Payton M . Determining the oleic/linoleic acid ratio in a single peanut seed: a comparison of two methods. Peanut Sci, 2011,38:78-84.
doi: 10.3146/PS11-3.1
[10] 禹山林, 杨庆利, 潘丽娟, 曹玉良, 闵平, 朱雨杰 . 一种非破坏性测定花生种子主要脂肪酸含量的方法. 中国专利, 2009,CN101887018B.
Yu S L, Yang Q L, Pan L J, Cao Y L, Min P, Zhu Y J . A nondestructive method for the determination of main fatty acids in peanut seeds. Chinese patent, 2009,CN101887018B(in Chinese).
[11] 张严, 谢岩黎, 孙淑敏, 马明扬, 李琳琳 . 近红外分析花生籽粒脂肪酸含量的研究. 河南工业大学学报(自然科学版), 2014,35(2):54-58.
Zhang Y, Xie Y L, Sun S M, Ma M Y, Li L L . Analysis of fatty acids in peanut seeds by near infrared spectroscopy. J Henan Univ Technol (Nat Sci Edn), 2014,35(2):54-58 (in Chinese with English abstract).
[12] Chamberlin K D, Barkley N A, Tillman B L, Dillwith J W, Madden R, Payton M E, Bennett R S . A comparison of methods used to determine the oleic/linoleic acid ratio in cultivated peanut (Arachis hypogaea L.). Agric Sci, 2014,5:227-237.
[13] Lee J M, Pae S B, Choung M G, Lee M H, Kim S U, Oh E Y, Oh K W, Jung C S, Oh I S . Determination of fatty acid composition in peanut seed by near infrared reflectance spectroscopy. Korean Soci Crop Sci, 2016,61:64-69.
[14] 王传堂 . 生物技术和近红外技术在花生育种中的应用. 中国海洋大学博士学位论文, 山东青岛, 2010.
Wang C T . Application of Biotechnology and NIRS in Peanut Breeding. PhD Dissertation of Ocean University of China, Qingdao, Shandong, China, 2010 (in Chinese with English abstract).
[15] 张丽君, 刘龙龙, 马名川, 崔林, 周建萍 . 燕麦蛋白质近红外定量模型的创建及其在育种中的应用. 安徽农业科学, 2017,45(8):10-13.
Zhang L J, Liu L L, Ma M C, Cui L, Zhou J P . Establishment of near infrared quantitative model of oat protein and its application in breeding. J Anhui Agric Sci, 2017,45(8):10-13 (in Chinese with English abstract).
[16] Tillman B L, Gorbet D W, Person G . Predicting oleic and linoleic acid content of single peanut seeds using near-infrared reflectance spectroscopy. Crop Sci, 2006,46:2121. doi: 10.2135/cropsci2006. 01.0031.
doi: 10.2135/cropsci2006.01.0031
[17] Kavera, Nadaf H L, Hanchinal R R . Near infrared reflectance spectroscopy (NIRS) for large scale screening of fatty acid profile in peanut ( Arachis hypogaea L.). Legume Res, 2014,37:272. doi: 10.5958/j.0976-0571.37.3.041.
doi: 10.5958/j.0976-0571.37.3.041
[18] 迟晓元, 郝翠翠, 陈明娜, 潘丽娟, 陈娜, 王通, 王冕, 杨珍, 梁成伟, 禹山林 . 花生AhFAD2-1基因与油酸/亚油酸比值的关系. 花生学报, 2016,45(4):20-24.
Chi X Y, Hao C C, Chen M N, Pan L J, Chen N, Wang T, Wang M, Yang Z, Liang C W, Yu S L . Relationship between AhFAD2-1 gene and oleic acid/linoleic acid ratio in Peanut. J Peanut Sci, 2016,45(4):20-24 (in Chinese with English abstract).
[19] 禹山林, 朱雨杰, 闵平, 杨庆利, 曹玉良, 王传堂, 刘旭, 周学秋 . 傅立叶近红外漫反射非破坏性测定花生种子主要脂肪酸含量. 花生学报, 2010,39(1):11-14.
Yu S L, Zhu Y J, Min P, Yang Q L, Cao Y L, Wang C T, Liu X, Zhou X Q . Nondestructive determination of main fatty acids in peanut seeds with near infrared reflectance spectroscopy. J Peanut Sci, 2010,39(1):11-14 (in Chinese with English abstract).
[20] 徐平丽, 唐桂英, 付春 . 高通量检测花生油酸含量相关基因AhFAD2等位变异的方法. 农业生物技术学报, 2016,24:1364-1373.
Xu P L, Tang G Y, Fu C . Methods for high-throughput detecting the allelic variation of AhFAD2 gene related with oleic acid content in peanut(Arachis hypogaea L.). J Agric Biotechnol, 2016,24:1364-1373 (in Chinese with English abstract).
[21] 只升华, 苏同兵, 于拴仓, 张凤兰, 余阳俊, 张德双, 赵岫云, 汪维红, 卢桂香, 朱月林 . 利用全基因组关联分析获得白菜A01染色体定位的霜霉病抗病位点和相关分子标记开发. 植物生理学报, 2016,52:693-702.
Zhi S H, Su T B, Yu S C, Zhang F L, Yu Y J, Zhang D S, Zhao X Y, Wang W H, Lu G X, Zhu Y L . Genetic characteristics of A01-located resistant loci to downy mildew in Chinese cabbage by genome-wide association studies. J Plant Physiol, 2016,52:693-702 (in Chinese with English abstract).
[22] 张照华, 王志慧, 淮东欣, 谭家壮, 陈剑洪, 晏立英, 王晓军, 万丽云, 陈傲, 康彦平, 姜慧芳, 雷永, 廖伯寿 . 利用回交和标记辅助选择快速培育高油酸花生品种及其评价. 中国农业科学, 2018,51:1641-1652.
doi: 10.3864/j.issn.0578-1752.2018.09.003
Zhang Z H, Wang Z H, Huai D X, Tan J Z, Chen J H, Yan L Y, Wang X J, Wan L Y, Chen A, Kang Y P, Jiang H F, Lei Y, Liao B S . Fast development of high oleate peanut cultivars by using marker-assisted backcrossing and their evaluation. Sci Agric Sin, 2018,51:1641-1652 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.09.003
[23] 吴静珠, 刘翠玲, 李慧, 孙晓荣 . 近红外光谱技术在食用油种类鉴别及脂肪酸含量检测中的应用. 食品科学技术学报, 2010,28(5):56-59.
Wu J Z, Liu C L, Li H, Sun X R . Application of near infrared spectroscopy in identification of edible oils and detection of fatty acids content. J Food Sci Technol, 2010,28(5):56-59 (in Chinese with English abstract).
[24] 周小华, 张玫, 相秉仁 . 近红外光谱结合区间偏最小二乘法应用于花生油酸价的测定. 粮油食品科技, 2017,25(2):62-64.
Zhou X H, Zhang M, Xiang B R . Detetmination of fatty acid value of peanut oil by near-infrared spectrometry combined with interval partial least squares. Sci Technol Cereals Oils Foods, 2017,25(2):62-64 (in Chinese with English abstract).
[25] 张建成, 王传堂, 王秀贞, 唐月异, 张树伟, 李桂杰 . 花生自然风干种子油酸、亚油酸和棕榈酸含量的近红外分析模型构建. 中国农学通报, 2011,27(3):90-93.
Zhang J C, Wang C T, Wang X Z, Tang Y Y, Zhang S W, Li G J . NIRS calibration models predictive of oleic, linoleic and palmitic acid content in sun-dried bulk peanut seed samples. Chin Agric Sci Bull, 2011,27(3):90-93 (in Chinese with English abstract).
[26] 张照华 . 利用MAS回交技术创制花生高油酸新种质及AhFAD2基因遗传效应分析. 中国农业科学院硕士学位论文, 北京, 2018.
Zhang Z H . Creation of New Peanut Germplasm with High Oleic Acid Using MAS Backcrossing Technology and the Genetic Effect of AhFAD2 Gene. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2018 (in Chinese with English abstract).
[27] Barkley N A, Isleib T G, Wang M L, Pittman R N . Genotypic effect of ahFAD2 on fatty acid profiles in six segregating peanut(Arachis hypogaea L.) populations. BMC Genetics, 2013,14:62. doi: 10.1186/1471-2156-14-62.
doi: 10.1186/1471-2156-14-62 pmid: 23866023
[1] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[2] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[3] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[4] LU Geng,TANG Xin,LU Jun-Xing,LI Dan,HU Qiu-Yun,HU Tian,ZHANG Tao. Cloning and function analysis of a type 2 diacylglycerol acyltransferase (DGAT2) from Perilla frutescens [J]. Acta Agronomica Sinica, 2020, 46(8): 1283-1290.
[5] Jian-Bin GUO,Li HUANG,Nian LIU,Huai-Yong LUO,Xiao-Jing ZHOU,Wei-Gang CHEN,Bei WU,Dong-Xin HUAI,Xiao-Ping REN,Hui-Fang JIANG. Novel peanut genotype with low behenic acid developed from recombinant inbred lines [J]. Acta Agronomica Sinica, 2020, 46(5): 661-667.
[6] CHEN Ying,ZHANG Sheng-Rui,WANG Lan,WANG Lian-Zheng,LI Bin,SUN Jun-Ming. Characteristics of oil components and its relationship with domestication of oil components in wild and cultivated soybean accessions [J]. Acta Agronomica Sinica, 2019, 45(7): 1038-1049.
[7] Zhi-Hong HOU,Yan WU,Qun CHENG,Li-Dong DONG,Si-Jia LU,Hai-Yang NAN,Zhuo-Ran GAN,Bao-Hui LIU. Creation of high oleic acid soybean mutation plants by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2019, 45(6): 839-847.
[8] Jian-Bin GUO,Bei WU,Wei-Gang CHEN,Li HUANG,Yu-Ning CHEN,Xiao-Jing ZHOU,Huai-Yong LUO,Nian LIU,Xiao-Ping REN,Hui-Fang JIANG. Stability of major fatty acids contents of peanut varieties grown in different ecological regions [J]. Acta Agronomica Sinica, 2019, 45(5): 676-682.
[9] HUANG Bing-Yan,QI Fei-Yan,SUN Zi-Qi,MIAO Li-Juan,FANG Yuan-Jin,ZHENG Zheng,SHI Lei,ZHANG Zhong-Xin,LIU Hua,DONG Wen-Zhao,TANG Feng-Shou,ZHANG Xin-You. Improvement of oleic acid content in peanut (Arachis hypogaea L.) by marker assisted successive backcross and agronomic evaluation of derived lines [J]. Acta Agronomica Sinica, 2019, 45(4): 546-555.
[10] Yu-Ting ZHANG,Shao-Ping LU,Cheng JIN,Liang GUO. Transcriptional regulation of oil biosynthesis in different parts of Wanyou 20 (Brassica napus) seeds [J]. Acta Agronomica Sinica, 2019, 45(3): 381-389.
[11] LIU Hao,LU Qing,LI Hai-Fen,LI Shao-Xiong,CHEN Xiao-Ping,LIANG Xuan-Qiang,HONG Yan-Bin. Molecular mechanism of stearoyl-ACP desaturase gene FAB2 expression in peanut [J]. Acta Agronomica Sinica, 2019, 45(11): 1638-1648.
[12] XUE Xiao-Meng,LI Jian-Guo,BAI Dong-Mei,YAN Li-Ying,WAN Li-Yun,KANG Yan-Ping,HUAI Dong-Xin,LEI Yong,LIAO Bo-Shou. Expression profiles of FAD2 genes and their responses to cold stress in peanut [J]. Acta Agronomica Sinica, 2019, 45(10): 1586-1594.
[13] FANG Yan,SUN Wan-Cang,WU Jun-Yan,LIU Zi-Gang,DONG Yun,MI Chao,MA Li,CHEN Qi,HE Hui-Li. Response of Membrane Fatty Acid Composition and ATPase Activity in Brassica rapa L. to Temperature in North China [J]. Acta Agron Sin, 2018, 44(01): 95-104.
[14] YU Ming-Yang,SUN Ming-Ming,GUO Yue,JIANG Ping-Ping,LEI Yong,HUANG Bing-Yan,FENG Su-Ping,GUO Bao-Zhu,SUI Jiong-Ming,WANG Jing-Shan,QIAO Li-Xian. Breeding New Peanut Line with High Oleic Acid Content Using Backcross Method [J]. Acta Agron Sin, 2017, 43(06): 855-861.
[15] LEI Ya-Kun,LIU Bing-Qiang,DI Rui,YAN Long,YANG Chun-Yan,HAO Dong-Xu,ZHANG Meng-Chen. Analysis of QTL for Fatty Acid Contents under Different Environments in Soybean [J]. Acta Agron Sin, 2016, 42(02): 303-310.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!