Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (12): 1945-1957.doi: 10.3724/SP.J.1006.2020.03019

• TILLAGE & CULTIVATION?PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of varieties collocation between crop seasons on the yield and resource use efficiency of maize-late rice cropping in Hubei province

Zhi-Hui LIU1(), Gao-Feng PAN2, Wen CHEN1, Ming-Guang QIN1, Cou-Gui CAO1, Chang-Long CHANG3, Ming ZHAN1,*()   

  1. 1Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River Ministry of Agriculture and Rural Affairs / College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, Hubei, China
    3Jingmen Soil and Fertilizer Station Jingmen 448000, Hubei, China
  • Received:2020-03-24 Accepted:2020-07-02 Online:2020-08-11 Published:2020-08-11
  • Contact: Ming ZHAN E-mail:1766686187@qq.com;zhanming@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300308);Special Fund for Agro-scientific Research in the Public Interest of China(201503122)

Abstract:

Maize-late rice cropping (M-R) is considered to coordinate the production of food and feed crop. In recent years, M-R has begun to develop in the middle reaches of the Yangtze River. However, technologies have not been systematically studied and improved for its higher yield and higher resources use efficiency. Especially, a reasonable collocation of varieties between maize and late rice seasons is an important basis to realize the yield potential of M-R, and still is under evaluation. In this study, different maize and late rice varieties were selected and collocated to different M-R modes. Their yield performance and use efficiency of resources were detected in different regions of Hubei province in 2015 and 2017. The results showed that under different heat conditions, the varieties collocation modes had significant effects on the annual yield of M-R and the production efficiency of resources. The modes of medium maturity maize-late indica rice cropping had obviously higher annual yield and resource production efficiency under higher accumulated temperature (GDD≥10°C); on the contrary, the annual yield and resource production efficiency of the modes of early maturity maize-late indica rice cropping were higher under lower GDD≥10°C. The utilization percentage of the annual effective GDD≥10°C of each varieties combination mode could reach 95.6%-100.0%, and the distribution ratio of GDD≥10°c between previous and subsequent season (TR) had a significant non-linear relationship with the relative annual yield of M-R. When the utilization percentage of GDD≥10°C was 97.0%-98.5% and TR was 1.06-1.08, M-R could obtain highest annual yield. Therefore, suitable varieties of maize and late rice could be selected according to the local heat resource and reasonable TR. In summary, high-yield maize varieties with a growth period of 125 days and late rice varieties with a growth period of 140 days should be selected for the southern regions with higher GDD≥10°C, while high-yield maize varieties with a growth period of 120 days and late rice varieties with a growth period of 130 days should be selected for the middle and northern regions with relatively lower GDD≥10°C in Hubei province.

Key words: maize-rice double cropping, varieties collocation, yield, seasonal distribution of climate resources, resource production efficiency

Table 1

Basic physical and chemical properties of soil at the experimental plots"

试验地
Experimental plots
有机质
Organic matter
(g kg-1)
全氮
Total nitrogen
(g kg-1)
全磷
Total phosphorus
(g kg-1)
全钾
Total potassium
(g kg-1)
速效磷
Available phosphorus
(mg kg-1)
可交换性钾
Exchangeable potassium
(mg kg-1)
漳河 Zhanghe 22.8 1.27 0.69 4.96 13.38 88.80
屈家岭 Qujialing 25.2 1.44 0.59 18.02 9.83 179.60
梅家墩 Meijiadun 20.59 0.65 1.51 7.67 24.86 71.75

Table 2

Selected maize and late rice varieties and their collocation modes"

试验年份及地点
Experimental years and plots
作物品种
Crop variety
早熟玉米-籼稻
EM-IR
早熟玉米-粳稻
EM-JR
中熟玉米-籼稻
MM-IR
中熟玉米-粳稻
MM-JR
2015漳河
Zhanghe in 2015
春玉米品种
Varieties of spring maize
郑单958
Zhengdan 958
郑单958
Zhengdan 958
汉单777
Handan 777
汉单777
Handan 777
晚稻品种
Varieties of late rice
天两优953
Tianliangyou 953
黄华占
Huanghuazhan
鄂晚17
Ewan 17
天源粳036
Tianyuanjing 036
天两优953
Tianliangyou 953
黄华占
Huanghuazhan
鄂晚17
Ewan 17
天源粳036
Tianyuanjing 036
2017屈家岭
Qujialing in 2017
春玉米品种
Varieties of spring maize
兴垦6号
Xingken 6
兴垦6号
Xingken 6
登海618
Denghai 618
登海618
Denghai 618
晚稻品种
Varieties of late rice
天两优953
Tianliangyou 953
鄂晚17
Ewan 17
天两优953
Tianliangyou 953
鄂晚17
Ewan 17
2017梅家墩
Meijiadun in 2017
春玉米品种
Varieties of spring maize
兴垦6号
Xingken 6
兴垦6号
Xingken 6
登海618
Denghai 618
登海618
Denghai 618
晚稻品种
Varieties of late rice
天两优953
Tianliangyou 953
鄂晚17
Ewan 17
天两优953
Tianliangyou 953
鄂晚17
Ewan 17

Table 3

Growth stage of spring maize and late rice under different modes of varieties collocation and their growing period"

试验地点
Experimental plots
品种搭配模式
Modes of varieties collocation
春玉米
Spring maize
晚稻
Late rice
周年生长日数
Annual growing period (d)
玉米品种
Maize varieties
水稻品种
Rice varieties
播种期-吐丝期-成熟期
Sowing-silking-maturity
(month/date)
全生育期
Whole growth period (d)
播种-移栽-齐穗期-成熟期
Sowing-transplanting-heading-maturity
(month/date)
本田生长期
Growth days after transplanting (d)
潜在生长天数
Potential growing days
实际生长天数
Actual growing period
漳河
Zhanghe in 2015
郑单958
Zhengdan 958
鄂晚17 Ewan 17 3/27-6/8-7/25 120 6/15-7/28-9/15-11/7 103 225 223
天源粳036 Tianyuangeng 03 6/15-7/28-9/7-11/5 101 221
天两优953 Tianliangyou 953 6/15-7/28-9/7-10/28 92 212
黄华占Huanghuazhan 6/15-7/28-9/27- immaturity
汉单777
Handan 777
鄂晚17 Ewan 17 3/27-6/12-7/30 126 6/15-7/31-9/17-11/7 99 225
天源粳036 Tianyuangeng 03 6/15-7/31-9/8-11/5 97 223
天两优953 Tianliangyou 953 6/15-7/31-9/8-10/28 88 214
黄华占Huanghuazhan 6/15-7/31-10/7- immaturity
屈家岭
Qujialing in 2017
兴垦6号
Xingken 6
鄂晚17 Ewan 17 3/25-6/3-7/15 113 6/18-7/22-9/12-11/9 110 227 223
天两优953 Tianliangyou 953 6/18-7/22-9/2-11/4 105 218
登海618
Denghai 618
鄂晚17 Ewan 17 3/25-6/10-7/22 120 6/24-7/26-9/12-11/9 106 226
天两优953 Tianliangyou 953 6/24-7/26-9/2-11/4 101 221
梅家墩
Meijiadun in 2017
兴垦6号
Xingken 6
鄂晚17 Ewan 17 3/28-6/7-7/16 111 6/19-7/24-9/9-11/3 102 236 222
天两优953 Tianliangyou 953 6/19-7/24-8/30-10/25 92 203
登海618
Denghai 618
鄂晚17 Ewan 17 3/28-6/11-7/20 116 6/25-7/28-9/9-11/6 100 216
天两优953 Tianliangyou 953 6/25-7/28-8/30-10/27 90 206

Fig. 1

Dynamic variation of mean temperature (a), rainfall (b), and solar radiation (c) over ten-days and their distributions between two crops seasons during experimental period ZH: Zhanghe; QJL: Qujialing; MJD: Meijiadun; AT: averaged daily temperature; GDD: growing degree days over 10℃; P: precipitation within ten-day; AP: accumulated precipitation in crop seasons; R: solar radiation within ten-day; AR: accumulated radiation in crop seasons."

Table 4

Dry matter accumulation, grain yield and yield components of spring maize and late rice under different modes of varieties collocation"

试验地点
Experimental plots
种搭配模式Modes of varieties collocation 生物量Biomass (t hm-2) 产量构成Yield components 产量Grain Yield (t hm-2)
玉米品种
Maize varieties
水稻品种
Rice varieties
玉米
Maize
晚稻
Late rice
周年
Annual
玉米Maize 晚稻Late rice 玉米
Maize
晚稻
Late rice
周年
Annual
EN
(×104 hm-2)
GN
(No.)
GW
(g)
PN
(×104 hm-2)
GN
(No.)
GW
(g)
漳河
Zhanghe in 2015
郑单958
Zhengdan 958
鄂晚17 Ewan 17 18.94 a 13.72 a 31.66 ab 246.9 c 75.9 a 27.7 c 9.09 a 6.38 c 15.47 c
天源粳036 Tianyuangeng 03 12.95 b 31.89 a 7.55 a 385.4 b 300.6 a 355.4 a 61.3 b 28.6 c 6.58 c 15.67 c
天两优953 Tianliangyou 953 13.13 ab 32.07 a 333.5 a 76.2 a 32.5 a 9.18 a 18.27 a
黄华占Huanghuazhan 11.67 c 30.61 b 9.09 e
汉单777
Handan 777
鄂晚17 Ewan 17 19.42 a 8.92 e 28.34 d 238.7 c 70.8 ab 27.8 c 8.74 a 5.51 d 14.25 d
天源粳036 Tianyuangeng 03 10.64 d 30.06 bc 7.28 a 491.7 a 241.4 b 287.7 b 61.3 b 30.3 b 5.89 d 14.63 d
天两优953 Tianliangyou 953 13.36 ab 32.78 a 295.2 b 71.2 a 30.7 b 7.77 b 16.51 b
黄华占Huanghuazhan 10.56 d 29.98 c 8.74 e
屈家岭 Qujialing
in 2017
兴垦6号
Xingken 6
鄂晚17 Ewan 17 15.57 b 10.23 c 25.80 c 7.15 a 432.3 b 372.9 a 332.0 b 55.2 b 22.3 b 10.69 b 5.89 b 16.58 c
天两优953 Tianliangyou 953 13.29 a 28.86 ab 446.1 a 89.2 a 22.5 ab 6.69 a 17.38 b
登海618
Denghai 618
鄂晚17 Ewan 17 17.38 a 10.72 c 28.10 b 7.22 a 500.9 a 344.6 b 336.8 b 64.4 b 23.0 ab 12.28 a 6.03 ab 18.31 a
天两优953 Tianliangyou 953 12.56 b 29.54 a 473.5 a 79.7 a 24.3 a 6.51 a 18.79 a
梅家墩Meijiadun
in 2017
兴垦6号
Xingken 6
鄂晚17 Ewan 17 14.53 b 12.13 c 26.66 d 6.68 a 365.3 b 343.6 a 310.8 b 81.6 b 29.2 a 7.86 b 6.83 c 14.69 d
天两优953 Tianliangyou 953 17.66 a 32.19 bc 439.7 a 100.3 a 25.0 b 8.00 b 15.86 c
登海618
Denghai 618
鄂晚17 Ewan 17 18.34 a 13.64 b 31.98 c 6.82 a 479.7 a 308.1 b 317.5 b 88.3 b 27.4 a 9.87 a 8.28 b 18.15 b
天两优953 Tianliangyou 953 17.53 a 35.87 a 397.1 a 113.8 a 25.3 b 9.10 a 18.97 a

Fig. 2

Effective growing degree days (GDD≥10°C) in crop growing seasons and the ratio of GDD between maize and rice season (TR) under different varieties collocation modes of maize-late rice cropping ZD: Zhengdan 958; HD: Handan 777; XK: Xingken 6; DH: Denghai 618; EW: Ewan 17; TYG: Tianyuanjing 036; TLY: Tianliangyou 953; HHZ: Huanghuazhan."

Fig. 3

Relationship of GDD ratio between two crops seasons (TR) and its percentage of the total annual GDD≥10°C (TUE) with the relative annual yield under maize-late rice cropping M-JR: maize varieties cropping with japonica rice varieties; M-IR: maize varieties cropping with indica rice varieties. * indicates significant difference at P ≤ 0.05."

Table 5

Production efficiency of resources under different modes of varieties collocation of maize-late rice cropping system"

试验地点
Experimental plots
种搭配模式
Modes of varieties collocation
积温生产效率
Production efficiency
of AT
(kg hm-2 -1)
光能生产效率
Production efficiency
of radiation
(g hm -2 MJ-1)
降水生产效率
Production efficiency
of precipitation
(kg hm-2 mm-1)
氮肥偏生产力
Nitrogen partial factor productivity
(kg kg-1 N)
玉米
Maize
晚稻
Late rice
周年
Annual
玉米
Maize
晚稻
Late rice
周年
Annual
玉米
Maize
晚稻
Late rice
周年
Annual
玉米
Maize
晚稻
Late rice
周年
Annual
2015漳河
Zhanghe
in 2015
EM-JR 6.32 a 4.64 c 5.49 c 0.43 a 0.37 b 0.41 b 19.22 a 20.64 c 19.78 c 33.68 a 30.40 c 32.24 b
EM-IR 6.72 a 6.51 a 0.55 a 0.49 a 31.12 a 23.79 a 43.73 a 38.07 a
MM-JR 5.71 b 4.37 c 5.09 d 0.39 b 0.35 b 0.38 c 18.48 a 18.15 c 18.35 c 32.38 a 26.25 d 29.69 c
MM-IR 6.10 b 5.89 b 0.51 a 0.44 b 26.34 b 21.50 b 37.00 b 34.40 b
2017屈家岭
Qujialing
in 2017
EM-JR 7.75 a 3.88 c 5.72 c 0.49 a 0.32 c 0.41 c 22.99 b 10.26 b 15.96 c 39.59 b 28.03 b 34.53 c
EM-IR 4.47 ab 6.05 b 0.38 b 0.44 b 11.66 a 16.73 b 31.87 a 36.22 bc
MM-JR 8.06 a 4.40 b 6.32 a 0.51 a 0.37 b 0.45 ab 26.35 a 10.54 b 17.64 a 45.49 a 28.71 b 38.15 ab
MM-IR 4.83 a 6.54 a 0.42 a 0.47 a 11.38 a 18.10 a 31.02 a 39.15 a
2017梅家墩
Meijiadun
in 2017
EM-JR 5.47 b 4.37 c 4.90 d 0.42 b 0.40 c 0.41 d 15.26 b 17.56 c 16.25 b 29.12 b 32.54 c 30.61 c
EM-IR 5.32 b 5.39 c 0.52 b 0.47 c 20.57 b 17.54 b 38.11 b 33.05 b
MM-JR 6.48 a 5.60 b 6.05 b 0.50 a 0.52 b 0.51 b 19.17 a 21.29 ab 20.08 a 36.54 a 39.41 b 37.81 a
MM-IR 6.41 a 6.45 a 0.64 a 0.56 a 23.39 a 20.98 a 43.33 a 39.52 a
[1] 陈阜, 梁志杰, 陈述泉 . 多熟制的发展前景. 世界农业, 1997, ( 6):18-20.
Chen F, Liang Z J, Chen S Q . The development prospects of multi-mature. World Agric, 1997, ( 6):18-20 (in Chinese).
[2] 徐琪, 杨琳章, 董元华 . 中国稻田生态系统. 北京: 中国农业出版社, 1998. pp 172-190.
Xu Q, Yang L Z, Dong Y H. Rice Field Ecosystem in China. Beijing: China Agriculture Press, 1998. pp 172-190(in Chinese).
[3] 杨滨娟, 孙丹平, 张颖睿, 黄国勤 . 长江中游地区水旱复种轮作模式资源利用率比较研究. 中国生态农业学报, 2018,26:1197-1205.
Yang B J, Sun D P, Zhang Y R, Huang G Q . Comparison of resources use efficiencies among paddy-upland multi-crop rotation systems in the middle reaches of Yangtze River. Acta Eco-Agric Sin, 2018,26:1197-1205 (in Chinese with English abstract).
[4] 刘闯, 陈防, 刘毅, 李志国, 张过师, 谢娟 . 3种水旱两熟轮作制养分运筹研究进展. 中国农学通报, 2016,32(36):198-204.
Liu C, Chen F, Liu Y, Li Z G, Zhang G S, Xie J . Research progress of nutrient management in three paddy-upland rotating systems. Agric Sci Bull Sin, 2016,32(36):198-204 (in Chinese with English abstract).
[5] 侯方舟, 屠乃美, 何康, 王靖渊, 付小红, 杨旭初, 张清壮 . 南方双季稻区冬种绿肥对土壤质量的影响研究进展. 作物研究, 2015,29:682-686.
Hou F Z, Tu N M, He K, Wang J Y, Fu X H, Yang X C, Zhang Q Z . Research progress in the effect of winter planting-green manure on double cropping rice system of south. Crop Res Sin, 2015,29:682-686 (in Chinese with English abstract).
[6] 孙艳妮, 程林, 李昌新 . 我国粮食安全的区域性和结构性差异. 江苏农业科学, 2010, ( 5):524-526.
Sun Y N, Cheng L, Li C X . Regional and structural differences of food security in China. Jiangsu Agric Sci, 2010, ( 5):524-526 (in Chinese).
[7] 展茗, 赵明, 刘永忠, 徐尚忠 . 湖北省玉米产需矛盾及提升玉米生产科技水平对策. 湖北农业科学, 2010,49:802-806.
Zhan M, Zhao M, Liu Y Z, Xu S Z . Enhance maize production technology, alleviate the contradiction between production and demand of maize in Hubei province. Hubei Agric Sci, 2010,49:802-806 (in Chinese with English abstract).
[8] 袁建华, 颜伟, 陈艳萍, 张跃中 . 南方丘陵生态区玉米生产现状及发展对策. 玉米科学, 2003, ( 专刊):29-31.
Yuan J H, Yan W, Chen Y P, Zhang Y Z . Production situation and development strategies of maize in southern hill ecological region. J Maize Sci, 2003, ( special):29-31 (in Chinese with English abstract)
[9] 李淑娅, 田少阳, 袁国印, 葛均筑, 徐莹, 王梦影, 曹凑贵, 翟中兵, 凌霄霞, 展茗, 赵明 . 长江中游不同玉稻种植模式产量及资源利用效率的比较研究. 作物学报, 2015,41:1537-1547.
doi: 10.3724/SP.J.1006.2015.01537
Li S Y, Tian S Y, Yuan G Y, Ge J Z, Xu Y, Wang M Y, Cao C G, Zhai Z B, Ling X X, Zhan M, Zhao M . Comparison of yield and resource utilization efficiency among different maize and rice cropping systems in middle reaches of Yangtze River. Acta Agron Sin, 2015,41:1537-1547 (in Chinese with English abstract).
[10] 李小勇, 唐启源, 李迪秦, 李维科, 李海林, 蔡庆红 . 不同种植密度对超高产稻田春玉米产量性状及光合生理特性的影响. 华北农学报, 2011,26(5):174-180.
doi: 10.7668/hbnxb.2011.05.035
Li X Y, Tang Q Y, Li D Q, Li W K, Li H L, Cai Q H . Effects of different plant densities on the photosynthetic-physiological characters and yield traits in spring maize grown on super-high yielding paddy field. Acta Agric Boreali-Sin, 2011,26(5):174-180 (in Chinese with English abstract).
[11] Ali M Y, Waddington S R, Timsina J, Hodson D, Dixon J . Maize-rice cropping systems in Bangladesh: status and research needs. J Agric Sci Technol, 2009,3:35-53.
[12] 赵强基, 郑建初, 袁从, 卞新民, 李萍萍, 章熙谷 . 中国南方稻区玉米-稻种植模式的建立和实践. 江苏农业学报, 1997,13:215-219.
Zhao Q J, Zheng J C, Yuan C, Bian X M, Li P P, Zhang X G . Establishment and practice on maize-rice cropping model in Paddy Area of southern China. Jiangsu J Agric Sci, 1997,13:215-219 (in Chinese with English abstract).
[13] Timsina J, Jat M L, Majumdar K . Rice-maize systems of South Asia: current status, future prospects and research priorities for nutrient management. Plant Soil, 2010,335:65-82.
doi: 10.1007/s11104-010-0418-y
[14] Kadiyala M D M, Mylavarapu R S, Li Y C, Reddy G B, Reddy M D . Impact of aerobic rice cultivation on growth, yield, and water productivity of rice-maize rotation in semiarid tropics. Agron J, 2012,104:1757-1765.
doi: 10.2134/agronj2012.0148
[15] 李小勇 . 南方稻田春玉米-晚稻种植模式资源利用效率及生产力优势研究. 湖南农业大学博士学位论文, 湖南长沙, 2011.
Li X Y . Study on Resource Use Efficiency and Relative Advantage of Productivity in Spring Maize-Later Rice Planting Model on South China Paddy Field. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2011 (in Chinese with English abstract).
[16] Sun M, Zhan M, Zhao M, Tang L L, Qin M G, Cao C G, Cai M L, Jiang Y, Liu Z H . Maize and rice double cropping benefits carbon footprint and soil carbon budget in paddy field. Field Crops Res, 2019, 243: 107620. https://doi.org/10.1016/j.fcr.2019.107620.
doi: 10.1016/j.fcr.2019.107620
[17] 姜振辉, 杨旭, 刘益珍, 林景东, 吴杨潇影, 杨京平 . 春玉米-晚稻与早稻-晚稻种植模式碳足迹比较. 生态学报, 2019,39:8091-8099.
Jiang Z H, Yang X, Liu Y Z, Lin J D, Wu Y X Y, Yang J P . Comparison of carbon footprint between spring maize-late rice and early rice-late rice cropping system. Acta Ecol Sin, 2019,39:8091-8099 (in Chinese with English abstract).
[18] Food and Agriculture Organization of the United Nations. Save and Grow in Practice: Maize, Rice, Wheat: a Guide to Sustainable Cereal Production.[ 2016-01-18]. http://www.fao.org/publi-cations/save-and-grow/maize-rice-wheat/en/.
[19] 杨羡敏, 曾燕, 邱新法, 姜爱军 . 1960-2000年黄河流域太阳总辐射气候变化规律研究. 应用气象学报, 2005,16:243-247.
Yang X M, Zeng Y, Qiu X F, Jiang A J . The climatic change of solar radiation over the yellow river basin during 1961-2000. J Appl Meteorol, 2005,16:243-247 (in Chinese).
[20] 曲曼丽 . 农业气候实习指导. 北京: 北京农业大学出版社, 1990. pp 1-8.
Qu M L . Agro-climate Practice Instruction. Beijing: Beijing Agricultural University Publishers, 1990. pp 1-8(in Chinese with English abstract).
[21] 艾治勇, 郭夏宇, 刘文祥, 马国辉, 青先国 . 长江中游地区双季稻安全生产日期的变化. 作物学报, 2014,40:1320-1329.
doi: 10.3724/SP.J.1006.2014.01320
Ai Z Y, Guo X Y, Liu W X, Ma G H, Qing X G . Changes of safe production dates of double-season rice in the middle reaches of the Yangtze River. Acta Agron Sin, 2014,40:1320-1329 (in Chinese with English abstract).
[22] 梁红梅 . 中国种植业优势区域及其耕地保护策略. 浙江大学博士学位论文, 浙江杭州, 2011.
Liang H M . Study on the Advantage Regions of Crop Farming in China and Their Arable Land Protection Tactics. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2011 (in Chinese with English abstract).
[23] 武兰芳, 陈阜, 欧阳竹 . 种植制度演变与研究进展. 耕作与栽培, 2002, ( 3):1-5.
Wu L F, Chen F, Ou-Yang Z . Evolution and study progress of cropping system. Cult Plant, 2002, ( 3):1-5 (in Chinese).
[24] 刘建, 徐少安, 周根友, 沈锦根, 陆虎华 . 沿江稻区多熟制春玉米两段覆膜种植技术. 江苏农业学报, 2001,17:13-18.
Liu J, Xu S A, Zhou G Y, Shen J G, Lu H H . Cultivation techniques for multi-cropping spring maize with plastic film covered at two stages in paddy region along Yangtze River. Jiangsu J Agric Sci, 2001,17:13-18 (in Chinese with English abstract).
[25] 高亮之, 郭鹏, 张立中, 林武 . 中国水稻的光温资源与生产力. 中国农业科学, 1984,17:17-23.
Gao L Z, Guo P, Zhang L Z, Lin W . Light and resources and potential productive of rice in China. Sci Agric Sin, 1984,17:17-23 (in Chinese with English abstract).
[26] 吕伟生, 曾勇军, 石庆华, 潘晓华, 黄山, 商庆银, 谭雪明, 李木英, 胡水秀, 曾研华 . 近30年江西双季稻安全生产期及温光资源变化. 中国水稻科学, 2016,30:323-334.
doi: 10.16819/j.1001-7216.2016.5157
Lyu W S, Zeng Y J, Shi Q H, Pan X H, Huang S, Shang Q Y, Tan X M, Li M Y, Hu S X, Zeng Y H . Changes in safe production dates and heat-light of resources of double cropping rice in Jiangxi province in recent 30 years. Chin J Rice Sci, 2016,30:323-334 (in Chinese with English abstract).
[27] 高亮之, 李林, 金之庆 . 中国水稻的气候资源与气候生态研究. 农业科技通讯, 1986, ( 4):5-8.
Gao L Z, Li L, Jin Z Q . Climatic resources and climatic ecology research of Chinese rice. Bull Agric Sci Technol, 1986, ( 4):5-8 (in Chinese with English abstract).
[28] 邱霞, 冯新 . 双季杂交晚稻直播栽培的不利气候分析. 湖北农业科学, 2013,52:4594-4596.
Qiu X, Feng X . Analysis of unfavorable climate condition to direct-seeding culture of double-cropping hybrid late rice. Hubei Agric Sci, 2013,52:4594-4596 (in Chinese with English abstract).
[29] Xu C L, Zhao H X, Zhang P, Wang Y Y, Huang S B, Meng Q F, Wang P . Delaying wheat seeding time and maize harvest improved water use efficiency in a warm temperature continental monsoon climate. Agron J, 2018,110:1420-1429.
doi: 10.2134/agronj2017.10.0613
[30] 周宝元, 马玮, 孙雪芳, 高卓晗, 丁在松, 李从锋, 赵明 . 播/收期对冬小麦-夏玉米一年两熟模式周年气候资源分配与利用特征的影响. 中国农业科学, 2019,52:1501-1517.
doi: 10.3864/j.issn.0578-1752.2019.09.003
Zhou B Y, Ma W, Sun X F, Gao Z H, Ding Z S, Li C F, Zhao M . Effects of different sowing and harvest dates of winter wheat-summer maize under double cropping system on the annual climate resource distribution and utilization. Sci Agric Sin, 2019,52:1501-1517 (in Chinese with English abstract).
[31] 周宝元, 马玮, 孙雪芳, 丁在松, 李从锋, 赵明 . 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究. 作物学报, 2019,45:589-600.
doi: 10.3724/SP.J.1006.2019.81067
Zhou B Y, Ma W, Sun X F, Ding Z S, Li C F, Zhao M . Characteristics of annual climate resource distribution and utilization in high-yielding winter wheat-summer maize double cropping system. Acta Agron Sin, 2019,45:589-600 (in Chinese with English abstract).
[32] Liu Y E, Xie R Z, Hou P, Li S K, Zhang H B, Ming B, Long H L, Liang S M . Phenological responses of maize to changes in environment when grown at different latitudes in China. Field Crops Res, 2013,144:192-199.
doi: 10.1016/j.fcr.2013.01.003
[33] 周宝元, 葛均筑, 侯海鹏, 孙雪芳, 丁在松, 李从锋, 马玮, 赵明 . 黄淮海平原南部不同种植体系周年气候资源分配与利用特征研究. 作物学报, 2020,46:937-949.
Zhou B Y, Ge J Z, Hou H P, Sun X F, Ding Z S, Li C F, Ma W, Zhao M . Characteristics of annual climate resource distribution and utilization for different cropping systems in the south of Yellow-Huaihe-Haihe Rivers plain. Acta Agron Sin, 2020,46:937-949 (in Chinese with English abstract).
[34] 杨晓光, 刘志娟, 陈阜 . 全球气候变暖对中国种植制度可能影响: VI. 未来气候变化对中国种植制度北界的可能影响. 中国农业科学, 2011,44:1562-1570.
Yang X G, Liu Z J, Chen F . The possible effects of global warming on cropping systems in China: VI. Possible effects of future climate change on northern limits of cropping system in China. Sci Agric Sin, 2011,44:1562-1570 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[11] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[12] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[13] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[14] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[15] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!