Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (5): 942-951.doi: 10.3724/SP.J.1006.2021.02032

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Evaluation of orderly mechanical seedling-broadcasting on yield formation and growth characteristics of rice

WANG Wei-Qin1(), TANG Qi-Yuan1,*(), CHEN Yuan-Wei1, JIA Wei1, LUO You-Yi1, WANG Xiao-Hui1, ZHENG Hua-Bin1, XIONG Jiao-Jun2   

  1. 1College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
    2The Corporation of Hongshuo Agriculture, Yiyang 413207, Hunan, China
  • Received:2020-05-12 Accepted:2020-11-13 Online:2021-05-12 Published:2020-12-23
  • Contact: TANG Qi-Yuan E-mail:wwqbrad@163.com;cntqy@aliyun.com
  • Supported by:
    Earmarked Fund for China Agriculture Research System(CARS-01-26)

Abstract:

Orderly mechanical seedling-broadcasting refers to the rice establishment methods that throw-transplanted the rice seedlings to the field in rows and lines by seedling broadcasting machine. Which are suggested to prominently increase the uniformity and efficiency of rice crops compared with manual seedling broadcasting. The present study was carried out to compare the differences between orderly mechanical seedling-broadcasting, manual transplanting and manual seedling broadcasting regarding yield formation and growth characteristics of rice. The results suggested that the grain yield of rice under orderly mechanical seedling-broadcasting was increased compared with manual transplanting and manual seedling broadcasting by 22.4%-28.3% and 2.8%-8.9%, respectively. On the aspect of growth traits, the orderly mechanical seedling-broadcasting was characterized as good ventilation, better assimilation ability of dry matter at late growth stages, delayed leaf senescence and high grain filling percentage, which increased the panicle numbers per square meter by 20.9%-64.2% compared with that of manual transplanting and increased the seed setting rate as compared with manual seedling-broadcasting. However, in order to further develop the potential of high yield, the techniques and planting machines of orderly mechanical seedling-broadcasting still need to be improved. In addition, the process of seedling recovery, tiller development and root growth traits of rice under orderly mechanical seedling-broadcasting should be explored in future studies.

Key words: rice, orderly mechanical seedling-broadcasting, yield, growth characteristics

Table 1

Growth characteristics of rice varieties and planting model with the measurement of wind speed"

品种
Variety
种植方式
Planting pattern
株高
Plant height (cm)
地上部生物量
Above-ground biomass (g m-2)
叶面积指数
Leaf area index
黄华占 手插秧 Manual transplanting 104.2 863.5 4.13
Huanghuazhan 手抛秧 Manual seedling-broadcasting 109.7 1325.7 7.23
机抛秧 Mechanical seedling-broadcasting 105.1 1172.8 6.88
甬优1538 手插秧 Manual transplanting 104.6 1042.4 4.32
Yongyou 1538 手抛秧 Manual seedling-broadcasting 105.4 1602.6 7.84
机抛秧 Mechanical seedling-broadcasting 103.6 1248.1 7.26

Table 2

Growth durations of Huanghuazhan and Yongyou 1538 under different rice establishment methods"

年份
Year
品种
Variety
种植方式
Establishment methods
播种-移栽
Seeding-
Transplanting
(d)
移栽-齐穗
Transplanting-
Heading
(d)
齐穗-成熟
Heading-
Maturity
(d)
全生育期
Growth
durations
(d)
2018 黄华占 手插秧 Manual transplanting 20 65 38 123
Huanghuazhan 手抛秧 Manual seedling-broadcasting 20 65 36 121
机抛秧 Mechanical seedling-broadcasting 20 65 36 121
甬优1538 手插秧 Manual transplanting 20 74 50 144
Yongyou 1538 手抛秧 Manual seedling-broadcasting 20 73 49 142
机抛秧 Mechanical seedling-broadcasting 20 73 49 142
2019 黄华占 手插秧 Manual transplanting 21 65 33 119
Huanghuazhan 手抛秧 Manual seedling-broadcasting 21 64 33 118
机抛秧 Mechanical seedling-broadcasting 21 67 33 121
甬优1538 手插秧 Manual transplanting 21 67 50 138
Yongyou 1538 手抛秧 Manual seedling-broadcasting 21 68 51 140
机抛秧 Mechanical seedling-broadcasting 21 69 52 142

Fig. 1

Grain yield of Huanghuazhan and Yongyou 1538 under different rice establishment methods Different lowercase letters denote the variances of different establishment methods of the same variety in a year (5% level according to LSD test)."

Table 3

Yield components of Huanghuazhan and Yongyou 1538 under different rice establishment methods"

年份
Year
品种
Variety
种植方式
Establishment methods
单位面积有效穗数
Panicle numbers per m2
每穗粒数
Spikelets per
panicle
结实率
Seed setting
rate (%)
千粒重
1000-grain
weight (g)
2018 黄华占 手插秧 Manual transplanting 254.7 b 164.0 a 88.3 a 19.4 a
Huanghuazhan 手抛秧 Manual seedling-broadcasting 340.0 a 156.6 a 85.6 a 19.7 a
机抛秧 Mechanical seedling-broadcasting 308.0 a 158.7 a 88.5 a 19.4 a
平均值 Mean value 300.9 A 159.8 A 87.5 A 19.5 A
甬优1538 手插秧 Manual transplanting 190.7 b 320.6 a 70.5 b 20.0 a
Yongyou 1538 手抛秧 Manual seedling-broadcasting 310.7 a 312.7 a 76.3 ab 20.7 a
机抛秧 Mechanical seedling-broadcasting 313.3 a 307.7 a 79.7 a 20.3 a
平均值 Mean value 271.6 A 313.7 A 77.6 A 20.9 A
2019 黄华占 手插秧 Manual transplanting 282.7 b 170.0 a 78.4 b 18.1 a
Huanghuazhan 手抛秧 Manual seedling-broadcasting 372.0 a 146.8 b 79.3 ab 18.9 a
机抛秧 Mechanical seedling-broadcasting 377.3 a 151.7 ab 83.4 a 19.1 a
平均值 Mean value 344.0 A 156.2 A 80.4 B 18.7 A
甬优1538 手插秧 Manual transplanting 193.3 b 303.4 a 76.2 b 21.1 a
Yongyou 1538 手抛秧 Manual seedling-broadcasting 289.3 a 261.6 b 76.3 b 20.9 a
机抛秧 Mechanical seedling-broadcasting 286.7 a 263.9 b 80.4 a 20.9 a
平均值 Mean value 256.4 A 276.3 A 75.5 A 20.3 A

Fig. 2

Tillering dynamics of Huanghuazhan and Yongyou 1538 under different rice establishment methods"

Fig. 3

Above-ground biomass of Huanghuazhan and Yongyou 1538 under different rice establishment methods MT: middle tillering; PI: Panicle initation; HD: heading; PM: physiological maturity. In each sub-figure, different lowercase letters denote the variances between different establishment methods at the same growth period (5% level according to LSD test)."

Fig. 4

Dry matter accumulation of Huanghuazhan and Yongyou 1538 at post-flowering stage under different rice establishment methods Different lowercase letters denote the variances between different establishment methods at the 5% probability level according to LSD test."

Fig. 5

SPAD values of Huanghuazhan and Yongyou 1538 under different rice establishment methods TS: middle tillering; PI: panicle initation; HD: heading; 10 DAH:10 days after heading."

Fig. 6

Wind and gust velocity of Huanghuazhan and Yongyou 1538 under different rice establishment methods"

[1] 金千瑜. 我国水稻抛秧栽培技术的应用与发展. 中国稻米, 1996, (1):10-13.
Jin Q Y. The application and development of rice seedling broadcasting in China. China Rice, 1996, (1):10-13 (in Chinese with English abstract).
[2] 陈健. 水稻栽培方式的演变与发展研究. 沈阳农业大学学报, 2003,34:389-393.
Chen J. Evolution and development of rice planting pattern. J Shenyang Agric Univ, 2003,34:389-393 (in Chinese with English abstract).
[3] 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕. 中国抛秧稻作技术体系及其特征. 中国农业科学, 2008,41:43-52.
Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y. Cultivation technical system of rice seedling broadcasting and its characteristics. Sci Agric Sin, 2008,41:43-52 (in Chinese with English abstract).
[4] 胡雅杰, 张洪程, 龚金龙, 龙厚元, 戴其根, 霍中洋, 许轲, 魏海燕, 李德剑, 沙安勤, 周有炎, 罗学超, 刘国林, 赵德亮. 不同栽培方式对水稻产量和物质生产特征影响. 中国稻米, 2012,18(5):15-19.
Hu Y J, Zhang H C, Gong J L, Long H Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Li D Y, Sha A Q, Zhou Y Y, Luo X C, Liu G L, Zhao D L. Effects of cultivation methods on the grain yield and biomass production characteristics of rice. China Rice, 2012,18(5):15-19 (in Chinese with English abstract).
[5] 戴其根, 霍中洋, 张洪程, 苏宝林, 许轲, 邱枫. 抛秧水稻生长发育与产量形成的生态生理机制II秧苗田间垂直分布格局及其生态生理效应. 作物学报, 2001,27:600-611.
Dai Q G, Huo Z Y, Zhang H C, Su B L, Xu K, Qiu F. The eco-physiological mechanism of growth, development and yield formation of broadcasted rice seedlings, the characteristics of II spatial distribution of plant on perpendicular and its eco-physiological effect. Acta Agron Sin, 2001,27:600-611 (in Chinese with English abstract).
[6] 戴其根, 张洪程, 霍中洋, 许轲, 邱枫. 抛秧稻生长发育特征及产量形成规律的探讨. 江苏农业研究, 2000,21(1):1-7.
Dai Q G, Zhang H C, Huo Z Y, Xu K, Qiu F. Characteristics of growth and yield formation of broadcasting-seedling of rice. Jiangsu Agric Res, 2000,21(1):1-7 (in Chinese with English Abstract).
[7] 闫凤宇, 于凤阁. 水稻抛秧应用现状及技术要点. 现代农业科技, 2011, (3):99-101.
Yan F Y, Yu F G. The application status and technical essentials for rice seedling broadcasting. Adv Agric Technol, 2011, (3):99-101 (in Chinese with English abstract).
[8] 孙永健, 徐徽, 秦俭, 贾现文, 马均. 栽培方式与免耕对杂交稻II优498灌浆期根系衰老和籽粒灌浆的影响. 中国农业科学, 2013,46:1347-1358.
Sun Y J, Xu H, Qin J, Jia X W, Ma J. Influence of cultivation methods and no-tillage on root senescence at filling stage and grain-filling properties of II you 498. Sci Agric Sin, 2013,46:1347-1358 (in Chinese with English abstract).
[9] 罗锡文, 王在满. 水稻生产全程机械化技术研究进展. 现代农业装备, 2014, (1):23-29.
Luo X W, Wang Z M. Research progress of rice production mechanization technology. Mod Agric Equip, 2014, (1):23-29 (in Chinese with English abstract).
[10] 夏倩倩, 张文毅, 纪要, 李坤. 我国机械抛秧技术与装备的研究现状及趋势. 中国农机化学报, 2019,40(6):201-208.
Xia Q Q, Zhang W Y, Ji Y, Li K. Research status and trend of mechanical throwing seedling technology and equipment in China. J Chin Agric Mechan, 2019,40(6):201-208 (in Chinese with English abstract).
[11] 谭艳红. 水稻抛秧机关键部件机构设计与试验研究. 湖南农业大学硕士学位论文, 湖南长沙, 2016.
Tan Y H. Design and Experimental Research of Key Components on Rice Throwing Machine. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2016 (in Chinese with English abstract).
[12] 陈旭暄, 宋建农, 刘建军, 魏青. 水稻钵苗输秧拔秧机构参数优化. 中国农业大学学报, 2005,10(2):19-21.
Chen X X, Song J N, Liu J J, Wei Q. Parametric optimization of a transporting and evulsing mechanism of potted rice seedlings. J China Agric Univ, 2005,10(2):19-21 (in Chinese with English abstract).
[13] 王国强. 浅析2ZU-6型播秧机性能与推广. 农业装备技术, 2002, (1):17-18.
Wang G Q. The extension and evaluation of 2ZU-6 rice transplanting machine. Technol Agric Equip, 2002, (1):17-18 (in Chinese).
[14] 汪友祥, 彭洪巽. 2ZP-13型水稻有序抛秧机的研发与推广. 农业机械, 2018, (11):87-90.
Wang Y X, Peng H X. The development and extension of 2ZP-13 orderly rice throw-transplanting machine. Agric Machine, 2018, (11):17-18 (in Chinese).
[15] 张洪程, 戴其根, 邱枫, 霍中洋, 许轲, 董明辉, 杨海生. 抛秧稻产量形成的生物学优势及高产栽培途径的研究. 江苏农学院学报, 1998,19(3):11-17.
Zhang H C, Dai Q G, Qiu F, Huo Z Y, Xu K, Dong M H, Yang H S. Studies on the biological superiority of yield formation of broadcasting-seedling rice and its high-yielding cultured way. J Jiangsu Agric Coll, 1998,19(3):11-17 (in Chinese with English abstract).
[16] 郭保卫, 陈厚存, 张春华, 魏海燕, 张洪程, 戴其根, 霍中洋, 许轲, 邢琳, 管文文, 黄幸福, 杨雄. 水稻抛栽秧苗立苗中的形态与生理变化. 作物学报, 2010,36:1715-1724.
Guo B W, Chen H C, Zhang C H, Wei H Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Xing L, Guan W W, Huang X F, Yang X. Morphological and physiological changes in seedling standing and establishment of broadcasted rice seedlings. Acta Agron Sin, 2010,36:1715-1724 (in Chinese with English abstract).
[17] 张洪程, 朱聪聪, 霍中洋, 许轲, 蒋晓鸿, 陈厚存, 高尚勤, 李德剑, 赵成美, 戴其根, 魏海燕, 郭保卫. 钵苗机插水稻产量形成优势及主要生理生态特点. 农业工程学报, 2013,29(21):50-59.
Zhang H C, Zhu C C, Huo Z Y, Xu K, Jiang X H, Chen H C, Gao S Q, Li D J, Zhao C M, Dai Q G, Wei H Y, Guo B W. Advantages of yield formation and main characteristics of physiological and ecological in rice with nutrition bowl mechanical transplanting. Trans CSAE, 2013,29(21):50-59 (in Chinese with English abstract).
[18] 于磊, 牟雪雷, 韩休海, 沈亮. 水稻钵育摆栽技术的应用及发展. 农机化研究, 2011,33(9):212-215.
Yu L, Mou X L, Han X H, Shen L. The application and development of rice bowl-seedling transplanting technology. J Agric Mechan Res, 2011,33(9):212-215 (in Chinese with English abstract).
[19] 郭保卫. 水稻有序摆栽超高产形成及其生理生态特征的研究. 扬州大学博士学位论文, 江苏扬州, 2013.
Guo B W. Studied on Super High Yield Formation and Its Eco-Physiological Characteristics of Ordered Transplanting and Optimized Broadcasting Rice. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2013 (in Chinese with English abstract).
[20] 刘华招, 王春江. 不同移栽方式对秧苗返青分蘖的影响. 现代化农业, 2006, (10):15-16.
Liu H Z, Wang C J. The effects of transplanting methods on the recovery and tillering ability of rice seedlings. Mod Agric, 2006, (10):15-16 (in Chinese with English abstract).
[21] 江立庚, 徐世宏, 李如平, 何礼健, 陈德威, 秦华东, 杨为芳, 谭素宁, 陈明才, 郑希, 陆福勇, 唐茂艳. 稻田耕作方式对抛秧稻分蘖特性的影响. 杂交水稻, 2006, (增刊1):23-25.
Jiang L G, Xu S H, Li R P, He L J, Chen D W, Qin H D, Yang W F, Tan S N, Chen M C, Zheng X, Lu F Y, Tang M Y. effects of tillage methods on the tillering ability of seedling-broadcasting rice. Hybrid Rice, 2006, (S1):23-25 (in Chinese with English abstract).
[22] 陈国建. 水稻钵育摆栽高产稳产机理分析. 垦殖与稻作, 2004, (5):28-30.
Chen G J. High yielding mechanisms of rice with nutrition bowl mechanical transplanting. Reclaim Rice Cult, 2004, (5):28-30 (in Chinese with English abstract).
林贤青, 周伟军, 朱德峰, 张玉屏, 杨国花. 强化栽培下水稻穗分化期叶片光合速率与水分利用率的研究. 中国水稻科学, 2005,19:132-136.
Lin X Q, Zhou W J, Zhu D F, Zhang Y P, Yang G H. Photosynthetic rate and water use efficiency of leaves at different positions during panicle initiation stage under the system of rice intensification. Chin J Rice Sci, 2005,19:132-136 (in Chinese with English abstract).
[23] 郭保卫, 许轲, 张洪程, 戴其根, 霍中洋, 魏海燕, 陈厚存. 有序摆抛栽超高产栽培对水稻根系形态生理特征的影响. 中国水稻科学, 2016,30:611-625.
Guo B W, Xu K, Zhang H C, Dai Q G, Huo Z Y, Wei H Y, Chen H C. Effects of ordered transplanting and optimized broadcasting on rice root system morphological and physiological characteristics under super high-yielding cultivation. Chin J Rice Sci, 2016,30:611-625 (in Chinese with English abstract).
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[6] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[7] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[8] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[9] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[10] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[11] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[12] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[13] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[14] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[15] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!