Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (5): 929-941.doi: 10.3724/SP.J.1006.2021.01047

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Response of photosynthetic performance of intercropped wheat to interaction intensity between above- and below-ground

WANG Yi-Fan(), YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang*()   

  1. Gansu Provincial Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2020-06-08 Accepted:2020-11-13 Online:2021-05-12 Published:2020-12-22
  • Contact: CHAI Qiang E-mail:wangyf@gsau.edu.cn;chaiq@gsau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31771738);Fuxi Young Talents Fund of Gansu Agricultural University(Gaufx-03Y10)

Abstract:

The purpose of this study is to explore the effects of above-ground and underground interaction intensity of intercropped population on the photosynthetic performance of intercropped wheat and to provide a basis for further revealing the photosynthetic mechanism of crop yield advantage in intercropping system. From 2015 to 2017 wheat intercropping with maize was taken as the research object. Three root separation methods were designed: no root separation (complete below-ground interaction treatment, W/M), 300 mesh nylon net separation (partial below-ground interaction treatment, NW/M), 0.12 mm plastic cloth separation (no below-ground interaction treatment, PW/M), and tow level maize densities. Meanwhile, the corresponding monocluture was carried out. The results showed that the Pn of intercropped wheat was significantly increased by the complete below-ground interaction treatment during per-symbiotic period and late symbiotic period of wheat/maize intercropping, with the increase of maize density the Pn of wheat increased during late symbiotic period. During per-symbiotic period, mid-symbiotic period and late symbiotic period of wheat/maize intercropping, the complete below-ground interaction treatment can significantly improve the Gs, Ci of intercropped wheat. The increase of maize density can promote the increase of Gs in the complete below-ground interaction treatment and partial below-ground interaction treatment during per-symbiotic period. The Tr of leaves was higher during mid-symbiotic period and late symbiotic period of wheat/maize intercropping without below-ground interaction treatment, while the Tr of leaves remained lower in both stages of complete below-ground interaction and partial below-ground interaction. Complete below-ground interaction treatment was helpful to increase the daily leaf area (LAD) in wheat, with the development of growth process, the increase ratio was larger. Complete belowground interaction treatment significantly increased the SPAD of leaves during mid-symbiotic period, which was beneficial to increase photosynthetic intensity. Intercropped wheat had significant yield-increasing effect. The grain yield of wheat under complete below-ground interaction treatment reached 76.8% of the corresponding single-cropped, which had the advantage of significantly increasing the grain yield of intercropping population. Moreover, the enhancement of above-ground interaction intensity was conducive to the positive effect of complete below-ground interaction treatment. The intensity of above- and below-ground interaction was one of the important factors affecting the photosynthetic characteristics of intercropped wheat.

Key words: intercropping, above- and below-ground interaction intensity, wheat, photosynthetic performance, yield

Fig. 1

Schematic diagram of wheat/maize intercropping and root separation Field layout of wheat/maize intercropping with a strip of 80 cm of wheat crops (six rows) alternated with a strip of 80 cm of maize crops (two rows), without physical barrier, with a nylon mesh, and with a solid plastic sheet, between wheat and maize strips. Plastic sheet and nylon mesh were placed vertically to the depth of 100 cm to separate the rooting zones between the two intercrops."

Fig. 2

Temporal dynamics of photosynthetic rate of intercropped wheat under different above- and below-ground interaction intensities W: sole wheat; M1: sole maize in low density; M2: sole maize in high density; N: nylon mesh barrier; P: plastic sheet barrier. The error bars indicate standard errors."

Fig. 3

Temporal dynamics of stomatal conductance of intercropped wheat under different above- and below-ground interaction intensities W: sole wheat; M1: sole maize in low density; M2: sole maize in high density; N: nylon mesh barrier; P: plastic sheet barrier. The error bar indicates standard error."

Fig. 4

Temporal dynamics of Ci of intercropped wheat under different above- and below-ground interaction intensities W: sole wheat; M1: sole maize in low density; M2: sole maize in high density; N: nylon mesh barrier; P: plastic sheet barrier. The error bar indicates standard error."

Fig. 5

Temporal dynamics of Tr of intercropped wheat under different above- and below-ground interaction intensities W: sole wheat; M1: sole maize in low density; M2: sole maize in high density; N: nylon mesh barrier; P: plastic sheet barrier. The error bar indicates standard error."

Fig. 6

Temporal dynamics of SPAD of intercropped wheat under different above- and below-ground interaction intensities W: sole wheat; M1: sole maize in low density; M2: sole maize in high density; N: nylon mesh barrier; P: plastic sheet barrier. The error bar indicates standard error. Different letters above error bars indicate significant differences at P < 0.05 among treatments."

Table 1

Leaf daily accumulation of intercropping wheat at different stages under different above- and below-ground interaction intensities"

年份
Year
处理
Treatment
小麦间作玉米共生前期
Per-symbiotic period
小麦间作玉米共生中期
Mid-symbiotic period
小麦间作玉米共生后期
Late symbiotic period
2015 W 71.3 ab 84.9 c 55.7 cd
W/M1 75.4 a 119.2 a 76.3 a
W/M2 78.6 a 109.7 a 74.3 a
NW/M1 69.2 b 102.3 b 68.9 b
NW/M2 70.0 b 97.4 b 69.1 b
PW/M1 61.8 c 88.2 c 58.3 c
PW/M2 65.0 bc 81.9 c 52.9 d
2016 W 68.9 b 87.8 cd 55.3 d
W/M1 76.0 a 109.7 a 77.8 a
W/M2 76.4 a 105.3 ab 70.4 b
NW/M1 71.2 b 100.4 b 66.3 c
NW/M2 71.4 b 97.4 b 65.2 c
PW/M1 62.8 c 89.4 c 55.8 d
PW/M2 64.1 c 83.6 d 57.9 d
2017 W 72.8 b 88.3 b 57.6 c
W/M1 77.0 a 105.4 a 70.4 a
W/M2 76.8 a 98.7 a 72.3 a
NW/M1 65.4 c 89.3 b 66.1 b
NW/M2 70.1 b 88.8 b 60.4 b
PW/M1 59.8 d 80.2 bc 53.9 d
PW/M2 61.8 c 77.9 c 50.4 d
显著性 Significant
年际 Year (Y) NS NS NS
种植模式 Planting pattern (P) ** ** **
地下互作强度 Below-ground interaction (I) ** ** **
密度 Density (D) NS NS NS
I×D NS NS NS

Table 2

Grain yield and population grain yield of intercropping wheat under different above- and below-ground interaction intensity"

处理
Treatment
2015 2016 2017
小麦
Wheat
总和
Total
土地当量比LER 小麦
Wheat
总和
Total
土地当量比LER 小麦
Wheat
总和
Total
土地当量比LER
W 6070 a 6070 f 6313 a 6313 f 6182 a 6182 e
W/M1 4434 b 13,584 b 1.44 b 5327 b 15,781 bc 1.68 a 4697 c 15,279 b 1.59 a
W/M2 4514 b 15,322 a 1.53 a 5400 b 17,203 a 1.63 a 4942 b 16,641 a 1.59 a
NW/M1 4002 c 12,761 c 1.34 c 5026 c 14,926 d 1.60 a 4422 d 13,326 de 1.41 b
NW/M2 3917 c 13,769 b 1.36 b 4876 cd 16,271 b 1.52 b 4153 e 13,959 d 1.34 b
PW/M1 3451 d 11,600 e 1.20 d 4718 d 12,722 e 1.40 c 3700 f 11,859 f 1.15 c
PW/M2 3609 d 12,045 d 1.21 d 4475 e 13,626 c 1.30 d 3626 f 11,860 f 1.24 c
显著性 Significant
年际 Year (Y) NS NS NS
种植模式 Planting pattern (P) ** ** ** ** ** **
密度 Density (D) NS ** ** ** ** ** * ** NS
地下作用强度
Below-ground interaction (I)
** ** ** * ** ** ** ** **
I×D NS ** ** NS NS ** * NS **

Fig. 7

Harvest index (HI) of intercropped wheat under different above- and below-ground interaction intensities W: sole wheat; M1: sole maize in low density; M2: sole maize in high density; N: nylon mesh barrier; P: plastic sheet barrier. The error bar indicates standard error. Different letters above error bars indicate significant differences at P < 0.05 among treatments."

Table 3

Correlation of grain yield with Pn, Gs, Ci, Tr, SPAD, and LAD"

项目
Item
指标
Index
小麦间作玉米共生前期
Pre-symbiotic period
小麦间作玉米共生中期
Mid-symbiotic period
小麦间作玉米共生后期
Late symbiotic period
总产量
Total yield
Pn 0.18 -0.26 0.13
Gs 0.53* 0.20 -0.27
Ci 0.34 0.45* 0.57**
Tr -0.39 -0.43 0.11
SPAD -0.17 0.59** 0.50*
LAD 0.42 0.52* 0.64**
小麦产量
Wheat yield
Pn 0.11 -0.23 0.51*
Gs 0.00 -0.32 -0.05
Ci 0.09 0.17 0.19
Tr 0.46* 0.13 -0.61**
SPAD 0.85** -0.17 0.06
LAD 0.52* 0.27 0.21
[1] Yin W, Chai Q, Guo Y, Feng F X, Zhao C, Yu A Z, Hu F L. Analysis of leaf area index dynamic and grain yield components of intercropped wheat and maize under straw mulch combined with reduced tillage in arid environments. J Agric Sci, 2016,8:26.
[2] Hu F L, Gan Y T, Chai Q, Feng F X, Zhao C, Yu A Z, Mu Y P, Zhang Y. Boosting system productivity through the improved coordination of interspecific competition in maize/pea strip intercropping. Field Crops Res, 2016,198:50-60.
[3] Watiki J M, Fukai S, Banda J A, Keating B A. Radiation interception and growth of maize/cowpea intercrop as affected by maize plant density and cowpea cultivar. Field Crops Res, 1993,35:123-133.
[4] 龚万灼, 吴雨珊, 雍太文, 刘卫国, 杨峰, 杨文钰. 玉米-大豆带状套作中荫蔽及光照恢复对大豆生长特性与产量的影响. 中国油料作物学报, 2015,37:475-480.
Gong W Z, Wu Y S, Yong T W, Liu W G, Yang F, Yang W Y. Effects of shade and lighting recovery on growth and yield of soybean in maize-soybean relay strip intercropping. Chin J Oil Crop Sci, 2015,37:475-480 (in Chinese with English abstract).
[5] 高阳, 段爱旺, 刘祖贵, 申孝军. 玉米和大豆条带间作模式下的光环境特性. 应用生态学报, 2008,19:1248-1254.
Gao Y, Duan A W, Liu Z G, Shen X J. Light environment characteristics in maize-soybean strip intercropping system. Chin J Appl Ecol, 2008,19:1248-1254 (in Chinese with English abstract).
[6] 杜进勇, 柴强, 王一帆, 范虹, 胡发龙, 殷文, 李登业. 地上地下互作强度对小麦间作玉米光合特性的影响. 作物学报, 2019,45:1398-1406.
Du J Y, Chai Q, Wang Y F, Fan H, Hu F L, Yin W, Li D Y. Effect of above-and below-ground interaction intensity on photosynthetic characteristics of wheat-maize intercropping. Acta Agron Sin, 2019,45:1398-1406 (in Chinese with English abstract).
[7] 王一帆, 秦亚洲, 冯福学, 赵财, 于爱忠, 刘畅, 柴强. 根间作用与密度协同作用对小麦间作玉米产量及产量构成的影响. 作物学报, 2017,43:754-762.
Wang Y F, Qin Y Z, Feng F X, Zhao C, Yu A Z, Liu C, Chai Q. Synergistic effect of root interaction and density on yield and yield components of wheat/maize intercropping system. Acta Agron Sin, 2017,43:754-762 (in Chinese with English abstract).
[8] Yang C H, Chai Q, Huang G B. Root distribution and yield responses of wheat/maize intercropping to alternate irrigation in the arid areas of northwest China. Plant Soil Environ, 2010,56:253-262.
[9] Li H W, Jiang D, Wollenweber B, Dai T B, Cao W X. Effects of shading on morphology, physiology and grain yield of winter wheat. Eur J Agron, 2010,33:267-275.
[10] 冯晓敏, 杨永, 任长忠, 胡跃高, 曾昭海. 豆科-燕麦间作对作物光合特性及籽粒产量的影响. 作物学报, 2015,41:1426-1434.
Feng X M, Yang Y, Ren C Z, Hu Y G, Zeng Z H. Effects of legumes intercropping with oat on photosynthesis characteristics of and grain yield. Acta Agron Sin, 2015,41:1426-1434 (in Chinese with English abstract).
[11] 焦念元, 李亚辉, 刘领, 齐付国, 尹飞, 宁堂远, 李增嘉, 付占国. 隔根对玉米/花生间作光合特性与间作优势的影响. 植物生理学报, 2016,52:886-894.
Jiao N Y, Li Y H, Liu L, Qi F G, Yin F, Ning T Y, Li Z J, Fu Z G. Effects of root barrier on photosynthetic characteristics and intercropping advantage of maize/peanut intercropping. Plant Physiol J, 2016,52:886-894 (in Chinese with English abstract).
[12] 陈光荣, 杨文钰, 张国宏, 王立明, 杨如萍, 雍太文, 刘卫国. 马铃薯/大豆套作对3个大豆品种光合指标和产量的影响. 应用生态学报, 2015,26:3345-3352.
Chen G R, Yang W Y, Zhang G H, Wang L M, Yang R P, Yong T W, Liu W G. Effects of potato/soybean intercropping on photosynthetic characteristics and yield of three soybean varieties. Chin J Appl Ecol, 2015,26:3345-3352 (in Chinese with English abstract).
[13] 崔亮, 苏本营, 杨峰, 杨文钰. 不同玉米-大豆带状套作组合条件下光合有效辐射强度分布特征对大豆光合特性和产量的影响. 中国农业科学, 2014,47:1489-1501.
Cui L, Su B Y, Yang F, Yang W Y. Effects of photo-synthetically active radiation on photosynthetic characteristics and yield of soybean in different maize/soybean relay strip intercropping systems. Sci Agric Sin, 2014,47:1489-1501 (in Chinese with English abstract).
[14] Yin W, Feng F X, Zhao C, Yu A Z, Hu F L, Chai Q, Gan Y T, Guo Y. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments. Int J Biometeorol, 2016,60:1423-1437.
[15] Chai Q, Qin A Z, Gan Y T, Yu A Z. Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agron Sustain Dev, 2014,34:535-543.
[16] 陈国栋, 柴强. 根系分隔和供水水平对玉米间作豌豆产量和耗水特征的影响. 西北农业学报, 2013,22(12):25-30.
Chen G D, Chai Q. Effect of root separation and irrigation on yield sand water use characteristics of maize pea intercropping system. Acta Agric Boreali-Occident Sin, 2013,22(12):25-30 (in Chinese with English abstract).
[17] 张向前, 黄国勤, 卞新民, 赵其国. 施氮肥与隔根对间作大豆农艺性状和根际微生物数量及酶活性的影响. 土壤学报, 2012,49:731-739.
Zhang X Q, Huang G Q, Bian X M, Zhao Q G. Effects of nitrogen ferritization and root separation on agronomic traits of intercropping soybean, quantity of microorganisms and activity of enzymes in soybean rhizosphere. Acta Ped Sin, 2012,49:731-739 (in Chinese with English abstract).
[18] Wang Z K, Zhao X N, Wu P T, Gao Y, Yang Q, Shen Y Y. Border row effects on light interception in wheat/maize strip intercropping systems. Field Crops Res, 2017,214:1-13.
[19] 王竹, 杨文钰, 吴其林. 玉/豆套作荫蔽对大豆光合特性与产量的影响. 作物学报, 2007,33:1502-1507.
Wang Z, Yang W Y, Wu Q L. Effects of shading in maize/soybean relay-cropping system on the photosynthetic characteristics and yield of soybean. Acta Agron Sin, 2007,33:1502-1507 (in Chinese with English abstract).
[20] 杨彩红, 柴强. 交替灌溉对小麦/蚕豆间作系统作物生理生态特性的影响. 中国生态农业学报, 2016,24:883-892.
Yang C H, Chai Q. Water use characteristics of alternately irrigated wheat/maize intercropping in oasis region of northwestern china. Chin J Eco-Agric, 2016,24:883-892 (in Chinese with English abstract).
[21] 宫香伟, 党科, 李境, 罗艳, 赵冠, 杨璞, 高小丽, 高金锋, 王鹏科, 冯佰利. 糜子绿豆间作模式下糜子光合物质生产及水分利用效率. 中国农业科学, 2019,52:4139-4153.
Gong X W, Dang K, Li J, Luo Y, Zhao G, Yang P, Gao X L, Gao J F, Wang P K, Feng B L. Effects of different intercropping patterns on photosynthesis production characteristics and water use efficiency of proso millet. Sci Agric Sin, 2019,52:4139-4153 (in Chinese with English abstract).
[22] 许大全. 气孔的不均匀关闭与光合作用的非气孔限制. 植物生理学通讯, 1995,31:246-252.
Xu D Q. Non-uniform stomatal closure and non-stomatal limitation of photosynthesis. Plant Physiol Commun, 1995,31:246-252 (in Chinese with English abstract).
[23] 王钰云, 王宏富, 李智, 段宏凯, 黄珊珊. 谷子花生间作对谷子光合特性及产量的影响. 中国农业科技导报, 2020,22:153-165.
Wang Y Y, Wang H F, Li Z, Duan H K, Huang S S. Influences of millet-peanut intercropping on photosynthetic characteristics and yield of millet. J Agri Sci Tec, 2020,22:153-165 (in Chinese with English abstract).
[24] 齐广平, 银敏华, 苏鹏海, 康燕霞, 李晓敏, 王金恒. 枸杞苜蓿间作模式下水分调控对枸杞光合特性与水分利用的影响. 水土保持学报, 2019,33:242-248.
Qi G P, Yin M H, Su P H, Kang Y X, Li X M, Wang J H. Effects of water regulation on photosynthetic characteristics and water use of Lycium barbarum under the mode of intercropping alfalfa and Lycium barbarum. J Soil Water Conser, 2019,33:242-248 (in Chinese with English abstract).
[25] 张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏. 大田遮荫对夏玉米光合特性的影响. 作物学报, 2007,33:216-222.
Zhang J W, Dong S T, Wang K J, Hu C H, Liu P. Effects of nitrogen application regimes on yield, quality, and nitrogen use efficiency of super japonica hybrid rice. Acta Agron Sin, 2007,33:216-222 (in Chinese with English abstract).
[26] 苏本营, 宋艳霞, 陈圣宾, 杨文钰. 大豆幼苗对套作玉米遮荫环境的光合生理生态响应. 生态学报, 2015,35:3298-3308.
Su B Y, Song Y X, Chen S B, Yang W Y. Photosynthetic responses of soybean ( Glycine max) seedlings to shading caused by maize in an intercropping system. Chin J Eco, 2015,35:3298-3308 (in Chinese with English abstract).
[27] 邹长明, 王允青, 曹卫东, 刘英, 张晓红, 唐杉. 不同品种小豆光合作用和生长发育对弱光的响应. 应用生态学报, 2015,26:3687-3692.
Zou C M, Wang Y Q, Cao W D, Liu Y, Zhang X H, Tang B. Response of photosynthesis and growth to weak light regime in different Adzuki bean ( Vigna angularis) varieties. Chin J Appl Eco, 2015,26:3687-3692 (in Chinese with English abstract).
[28] Zhang F S, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant and Soil, 2003,248:305-312.
[29] 刘广才, 杨祁峰, 李隆, 孙建好. 小麦/玉米间作优势及地上部与地下部因素的相对贡献. 植物生态学报, 2008,32:477-484.
Liu G C, Yang Q F, Li L, Sun J H. Intercropping advantage and contribution of above- and below-ground. Chin J Plant Eco, 2008,32:477-484 (in Chinese with English abstract).
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[3] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[4] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[5] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[6] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[7] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[8] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[9] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[10] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[11] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[12] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[13] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[14] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[15] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!