Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (6): 1488-1501.doi: 10.3724/SP.J.1006.2022.14087

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure

QIN Lu1**(), HAN Pei-Pei2**(), CHANG Hai-Bin3, GU Chi-Ming1, HUANG Wei3, LI Yin-Shui1, LIAO Xiang-Sheng1, XIE Li-Hua1, LIAO Xing1,*()   

  1. 1Oil Crops Research Institute of Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
    2Institute of Agriculture Science in Jiangsu Coastal Area, Yancheng 224002, Jiangsu, China
    3Huanggang Academy of Agricultural Sciences, Huanggang 438000, Hubei, China
  • Received:2021-05-14 Accepted:2021-10-19 Online:2022-06-12 Published:2021-11-18
  • Contact: LIAO Xing E-mail:qinlu-123@126.com;hanpeipei123@126.com;liaox@oilcrops.cn
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-22);Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2013-OCRI)

Abstract:

Rapeseed (Brassica napus L.) is the major edible oil crop in China, and it is also a kind of crop for land use and maintenance, crop rotation, and fallow. With the promotion of green development in agriculture, rapeseed is highlighted with its high quality as green manure due to the characteristics of great biomass and adaptability. For the different industrial objectives of rapeseed cultivation, the nutrient demand characteristics of the existing rapeseed varieties determine the high recommended fertilization levels, whereas it cannot meet the needs of green manure with low fertilizer input. Therefore, the evaluation and screening of rapeseed germplasms with low nitrogen (N) tolerance can provide material support for breeding rapeseed cultivars as green manure. In this study, 73 rapeseed germplasms were planted at two N levels (low N and normal N) in the field experiment, the potential application as green manure of different rapeseed germplasms were evaluated by fresh weight, nutrient accumulation, and tolerance index at full flowering stage. Results showed that the change of fresh weight per plant for 73 rapeseed germplasms under low N conditions ranged from 29.33 g to 199.33 g, and the variation coefficient was 30.0%. Meanwhile, under low N stress, the change of N accumulation in shoot and root of 73 rapeseed germplasms were ranged from 48.67-360.43 mg and 4.21-67.46 mg per plant, and the variation coefficient were 31.0% and 53.0%, respectively. This mean that there were certain genetic variations biomass and nutrient absorption and accumulation ability among different rapeseed germplasms. Therefore, it was feasible to select the rapeseed germplasm with superior advantages as green manure. According to the comprehensive analysis of N efficiency and tolerance index of different rapeseed germplasms at full-bloom stage, 25 of 73 rapeseed germplasms had relatively strong tolerance to low N, while 17 germplasms had relatively poor tolerance to low N, belonging to low N sensitive type. Further analysis revealed that the fresh weight per plant, N accumulation, and N uptake efficiency of low N tolerance germplasms were significantly greater than those of low N sensitive germplasms under two N treatments, it could be used as potential green manure for further application. According to the calculation, the maximum amount of N returned to the field in the low N tolerance rapeseed germplasm was 80.2 kg hm-2. Above all, the selected germplasms with great low N tolerance could be used as potential green manure rapeseed resources to be reserved and applied. In actual production, to better realize the industrial application goal of “the few fertilizers convert into the more green manure”, the application of low N tolerant rapeseed as green fertilizer can reduce the input of chemical fertilizer.

Key words: rapeseed, low nitrogen tolerance, germplasms screening, green manure, fresh weight, nitrogen accumulation amount

Table 1

Tested rapeseed germplasms and their numbers"

编号
Number
种质
Germplasm
编号
Number
种质
Germplasm
编号
Number
种质
Germplasm
N01 镇2736 Zhen 2736 N26 1L086 N51 1L094
N02 浙双3号Zheshuang 3 N27 1L097 N52 1L096
N03 泸州5号Luzhou 5 N28 1L138 N53 1L116
N04 宜油3号Yiyou 3 N29 1L150 N54 1L465
N05 云油7号Yunyou 7 N30 1L157 N55 4D628
N06 4D333 N31 1L198 N56 L228
N07 4D359 N32 1L203 N57 Altex
N08 4D386 N33 1L247 N58 甘油4号Ganyou 4
N09 漕油2号Caoyou 2 N34 1L285 N59 云油7号Yunyou 7
N10 浙优油1号Zheyouyou 1 N35 1L287 N60 H47
N11 甘油5号Ganyou 5 N36 1L453 N61 H41
N12 岳阳84-8 Yueyang 84-8 N37 4092 N62 320
N13 408-8 N38 50-SWU100 N63 862
N14 恩油2号Enyou 2 N39 1L053 N64 绵杂94-13 Mianza 94-13
N15 凯油1号Kaiyou 1 N40 L228 N65 宠马 Chongma
N16 绵杂94-13 Mianza 94-13 N41 马努 Manu N66 沪油19 Huyou 19
N17 182-甲920 182-Jia 920 N42 Sedo-10 N67 阳光2008 Yangguang 2008
N18 186-甲预31棚186-Jiayu 31 peng N43 P17 N68 1L021
N19 294-12-P25 N44 GSB604 N69 1L023
N20 51-SWU102 N45 圣光77 Shengguang 77 N70 1L098
N21 52-SWU103 N46 68232 N71 1L159
N22 57-SWU111 N47 124-2012-8998 N72 1L451
N23 132-WH-29 N48 129-2012-9542 N73 1L459
N24 201-Y34 N49 165-WH-31
N25 1L050 N50 1L076

Table 2

Changes of indicators in rapeseed germplasms under different nitrogen levels at full-bloom stage"

参数
Parameter
低氮 Low nitrogen 正常氮 Normal nitrogen
变幅
Range
平均值
Average
标准差
SD
变异系数
CV (%)
变幅
Range
平均值
Average
标准差
SD
变异系数
CV (%)
单株鲜重FB (g) 29.33-199.33 114.61 bB 34.86 30.41 91.33-378.67 212.85 aA 55.61 26.13
单株干重PB (g) 5.13-32.80 17.87 bB 5.61 31.41 11.23-46.60 27.40 aA 7.47 27.25
单株地下部干重RB (g) 0.83-6.40 3.24 bA 1.15 35.59 1.60-11.98 4.27 aA 1.59 37.39
单株地上部干重SB (g) 4.30-27.81 14.03 bB 4.66 33.19 9.57-37.87 23.43 aA 5.81 24.80
根冠比RSR 0.15-0.47 0.24 aA 0.06 23.36 0.11-0.71 0.18 bA 0.07 39.05
地下部氮含量RNC (%) 0.28-2.02 0.49 bA 0.22 44.79 0.40-1.25 0.64 aA 0.17 26.45
地上部氮含量SNC (%) 0.90-2.81 1.39 bA 0.31 22.53 1.07-2.62 1.75 aA 0.32 18.21
单株地下部氮累积量RNA (mg) 4.21-67.46 15.65 bB 8.29 52.99 11.48-61.70 24.73 aA 9.23 37.34
单株地上部氮累积量SNA (mg) 48.67-360.43 193.62 bB 60.88 31.44 143.66-697.85 402.24 aA 115.89 28.81
单株氮累积量NA (mg) 52.88-427.88 207.30 bB 65.68 31.68 162.60-722.82 432.14 aA 124.94 28.91
氮利用效率NUE (mg mg-1) 41.77-128.26 87.00 aA 18.96 21.79 41.97-104.96 66.33 bA 13.38 20.16
氮吸收效率NAE (mg mg-1) 0.01-0.12 0.06 bB 0.02 31.68 0.11-0.48 0.29 aA 0.91 28.91

Fig. 1

Correlation analysis of indicators value under different nitrogen levels of rapeseed germplasm at full-bloom stage * and ** indicate significant correlation at the 0.05 and 0.01 probability levels, respectively. FB: fresh biomass (g); PB: whole plant biomass (g); RB: root biomass (g); SB: shoot biomass (g); RSR: root-shoot ratio; RNC: root N content (%); SNC: shoot N content (%); RNA: root N accumulation(mg); SNA: shoot N accumulation (mg); NA: whole plant N accumulation (mg); NUE: N use efficiency (mg mg-1); NAE: N uptake efficiency (mg mg-1)."

Table 3

Coefficient and contribution rate of comprehensive index under different nitrogen levels of rapeseed at full-bloom stage"

参数
Parameter
低氮 Low nitrogen 正常氮 Normal nitrogen
主成分1
PC 1
主成分2
PC 2
主成分3
PC 3
主成分1
PC 1
主成分2
PC 2
主成分3
PC 3
主成分4
PC 4
单株鲜重FB 0.849 -0.411 0.030 0.833 0.260 -0.248 0.161
单株干重PB 0.886 -0.387 0.000 0.786 0.443 0.196 -0.072
单株地下部干重RB 0.828 -0.316 0.384 0.696 0.336 0.600 -0.164
单株地上部干重SB 0.891 -0.381 -0.154 0.859 0.355 -0.310 0.022
根冠比RSR -0.006 0.138 0.957 0.169 0.129 0.931 -0.264
地下部氮含量RNC 0.178 0.764 0.037 -0.383 -0.248 0.367 0.737
地上部氮含量SNC 0.028 0.903 0.030 0.346 -0.841 0.230 -0.146
单株地下部氮累积量RNA 0.652 0.483 0.231 0.581 0.188 0.302 0.611
单株地上部氮累积量SNA 0.890 0.315 -0.177 0.931 -0.264 -0.118 -0.031
单株氮累积量NA 0.916 0.339 -0.119 0.932 -0.276 -0.169 0.042
氮利用效率NUE 0.102 -0.890 0.100 -0.322 0.873 -0.147 0.037
氮吸收效率NAE 0.915 0.345 -0.111 0.934 -0.273 -0.162 0.045
特征值Eigenvalue 5.923 3.339 1.211 5.878 2.305 1.793 1.072
方差贡献率VCR (%) 49.357 27.839 10.090 48.985 19.211 14.943 8.932
累计贡献率CP (%) 49.357 77.196 87.286 48.985 68.195 83.138 92.071

Table 4

Nitrogen efficiency comprehensive value and tolerance index under different nitrogen levels of rapeseed at full-bloom stage"

编号
Number
氮效率综合值
N efficiency comprehensive value
耐性指数Tolerance index 编号
Number
氮效率综合值
N efficiency comprehensive value
耐性指数Tolerance
index
LN NN LN NN
N01 0.53 0.25 0.54 N38 0.32 0.28 0.42
N02 0.42 0.12 0.47 N39 0.35 0.30 0.81
N03 0.46 0.25 0.45 N40 0.35 0.18 0.59
N04 0.56 0.23 0.63 N41 0.38 0.15 0.39
N05 0.50 0.26 0.92 N42 0.49 0.09 0.44
N06 0.70 0.37 1.33 N43 0.40 0.15 0.50
N07 0.46 0.22 0.73 N44 0.38 0.18 0.22
N08 0.55 0.26 0.71 N45 0.59 0.16 0.46
N09 0.54 0.25 0.95 N46 0.40 0.17 0.54
N10 0.33 0.29 0.63 N47 0.42 0.11 0.46
N11 0.61 0.22 0.65 N48 0.41 0.16 0.62
N12 0.33 0.13 0.32 N49 0.39 0.12 0.57
N13 0.32 0.21 0.54 N50 0.49 0.12 0.62
N14 0.56 0.17 0.77 N51 0.48 0.10 0.46
N15 0.47 0.33 0.71 N52 0.53 0.25 0.62
N16 0.32 0.27 0.81 N53 0.57 0.25 0.98
N17 0.62 0.21 0.66 N54 0.47 0.11 0.82
N18 0.45 0.21 0.78 N55 0.64 0.21 0.76
N19 0.54 0.23 1.06 N56 0.42 0.17 0.60
N20 0.35 0.16 0.50 N57 0.50 0.28 1.10
N21 0.32 0.13 0.42 N58 0.39 0.09 0.31
N22 0.36 0.22 0.51 N59 0.24 0.08 0.21
N23 0.38 0.19 0.68 N60 0.31 0.00 0.18
N24 0.32 0.24 0.72 N61 0.32 0.14 0.45
N25 0.46 0.17 0.48 N62 0.82 0.16 0.47
N26 0.56 0.32 0.70 N63 0.25 0.09 0.43
N27 0.35 0.21 0.60 N64 0.53 0.20 0.39
N28 0.34 0.32 0.53 N65 0.19 0.12 0.25
N29 0.40 0.26 0.47 N66 0.55 0.24 0.64
N30 0.50 0.21 0.60 N67 0.18 0.39 0.60
N31 0.29 0.20 0.39 N68 0.16 0.09 0.17
N32 0.36 0.25 0.43 N69 0.22 0.19 0.25
N33 0.34 0.20 0.47 N70 0.13 0.14 0.15
N34 0.35 0.28 0.58 N71 0.12 0.06 0.13
N35 0.31 0.21 0.46 N72 0.24 0.08 0.17
N36 0.30 0.29 0.44 N73 0.06 0.05 0.07
N37 0.45 0.36 0.74 平均值Average 0.41 0.20 0.55

Fig. 2

Scatter map of nitrogen efficiency comprehensive value under different nitrogen levels of rapeseed at full-bloom stage Germplasms of the I class includes: N10, N13, N16, N22, N24, N27, N28, N29, N31, N32, N33, N34, N35, N36, N38, N39, N67. Germplasms of the II class includes: N01, N03, N04, N05, N06, N07, N08, N09, N11, N15, N17, N18, N19, N26, N30, N37, N52, N53, N55, N56, N57, N64, N66. Germplasms of the III class includes: N14, N25, N42, N43, N45, N46, N47, N48, N49, N50, N51, N54, N62. Germplasms of the Ⅳ class includes: N02, N12, N20, N21, N23, N40, N41, N44, N58, N59, N60, N61, N63, N65, N68, N69, N70, N71, N72, N73. LN: low nitrogen; NN: normal nitrogen."

Fig. 3

Clustering dendrogram of tolerance index of rapeseed at full-bloom stage Germplasms with the strongest tolerance to low nitrogen: N05, N06, N09, N19, N53, N57. Germplasms with the stronger tolerance to low nitrogen: N04, N07, N08, N10, N11, N14, N15, N16, N17, N18, N23, N24, N26, N27, N30, N34, N37, N39, N40, N48, N49, N50, N52, N54, N55, N56, N66, N67. Germplasms with the poor tolerance to low nitrogen: N01, N02, N03, N13, N20, N21, N22, N25, N28, N29, N31, N32, N33, N35, N36, N38, N41, N42, N43, N45, N46, N47, N51, N61, N62, N63, N64. Germplasms with the worst tolerance to low nitrogen: N12, N44, N58, N59, N60, N65, N68, N69, N70, N71, N72, N73."

Fig. 4

Comparison of nitrogen efficiency of rapeseed germplasms with different low nitrogen tolerance LN: low nitrogen; NN: normal nitrogen."

Table 5

Fresh biomass and NPK amounts returning to field of rapeseed germplasms with higher low nitrogen tolerance under different nitrogen levels"

编号
Number
低氮 Low nitrogen 正常氮 Normal nitrogen
鲜草产量
Fresh biomass
(t hm-2)
氮还田量
N amount of returning field
(kg hm-2)
磷还田量
P amount of returning field
(kg hm-2)
钾还田量
K amount of returning field
(kg hm-2)
鲜草产量
Fresh biomass
(t hm-2)
氮还田量
N amount of returning field
(kg hm-2)
磷还田量
P amount of returning field
(kg hm-2)
钾还田量
K amount of returning field
(kg hm-2)
N04 23.59 80.20 12.90 99.73 53.38 115.23 27.35 212.69
N05 32.13 68.88 16.72 101.72 53.65 133.74 28.73 204.02
N06 41.20 75.95 19.33 127.61 65.40 121.92 26.04 251.65
N07 30.55 49.93 15.31 128.62 51.13 122.00 26.80 175.94
N08 32.33 73.09 17.68 122.41 50.23 112.59 23.10 182.21
N09 33.60 59.65 16.64 102.75 56.23 107.02 16.99 179.72
N11 30.60 70.21 12.32 108.21 48.90 109.48 23.91 163.10
N14 35.51 61.92 16.51 113.76 49.50 147.98 32.20 188.30
N15 27.53 41.18 16.09 99.64 59.29 138.52 27.95 227.01
N17 30.60 33.91 9.85 83.14 61.05 95.74 17.95 191.18
N18 31.68 49.65 13.75 94.12 56.20 93.96 28.37 256.66
N19 36.45 56.60 19.59 163.96 50.73 95.56 18.50 231.58
N26 26.75 63.63 12.57 83.93 62.10 118.03 21.95 197.50
N30 28.10 57.80 12.39 78.23 57.33 108.64 18.36 202.12
N37 22.48 51.73 11.09 65.95 50.90 134.00 25.60 252.08
N48 25.35 44.57 13.98 117.08 32.08 85.84 17.64 145.97
N49 30.65 40.96 14.55 123.68 40.43 76.79 21.13 194.22
N50 33.55 52.54 16.91 122.81 42.48 86.82 17.17 142.96
N52 32.85 62.59 14.02 96.44 39.90 132.49 19.27 196.75
N53 36.35 59.92 19.04 130.05 39.15 80.41 18.82 168.39
N54 25.53 50.41 12.89 112.25 49.25 114.33 21.83 255.93
N55 44.85 62.82 18.70 126.46 50.13 95.35 18.23 190.19
N56 35.10 47.80 10.68 95.86 45.43 86.14 14.92 210.12
N57 38.33 51.82 13.61 144.14 45.75 121.75 32.13 348.49
N66 29.40 64.67 13.51 105.86 46.73 110.00 18.11 176.50
变幅Range 22.48-44.85 33.91-80.20 9.85-19.59 65.95-163.96 32.08-65.40 76.79-147.98 14.92-32.20 142.96-348.49
均值Average 31.80 57.30 14.83 109.99 50.29 109.77 22.52 205.81
标准差 SD 5.32 11.51 2.79 21.72 7.88 19.37 5.06 43.63
变异系数CV (%) 16.74 20.09 18.79 19.76 15.66 17.65 22.46 21.20
[1] 耿成杰. 湖北省油料作物学会举行油菜豆科绿肥混种间作学术讨论会. 土壤通报, 1963, (6):59.
Geng C J. A seminar of rape intercropping with leguminous green manure—The oil crop science society of Hubei province. Chin J Soil Sci, 1963, (6):59 (in Chinese).
[2] 许友中. 油菜绿肥复播技术. 新疆农业科学, 1966, (6):230.
Xu Y Z. Multiple cropping technology of green manure oilseed rape. Xinjiang Agric Sci, 1966, (6):230 (in Chinese).
[3] 顾炽明, 李银水, 谢立华, 胡小加, 廖星, 秦璐. 浅析油菜作为绿肥的应用优势. 中国土壤与肥料, 2019, (1):180-183.
Gu C M, Li Y S, Xie L H, Hu X J, Liao X, Qin L. Analysis on application advantages of rapeseed as green manure. China Soils Fert, 2019, (1):180-183 (in Chinese with English abstract).
[4] 汪波, 刘姝, 甘丽, 张哲, 郭安国, 熊明清, 杨华, 郭妮妮, 蒯婕, 傅廷栋, 周广生. 油菜多功能利用技术模式. 长江蔬菜, 2019, (6):29-31.
Wang B, Liu S, Gan L, Zhang Z, Guo A G, Xiong M Q, Yang H, Guo N N, Kuai J, Fu T D, Zhou G S. Rapeseed multifunctional utilization technology model. J Changjiang Veget, 2019, (6):29-31 (in Chinese).
[5] 张树杰, 陈灿, 张红升, 于荣. 绿肥油菜研究进展. 安徽农业科学, 2020, 48(15):24-27.
Zhang S J, Chen C, Zhang H S, Yu R. Research progress of green manure oilseed rape. J Anhui Agric Sci, 2020, 48(15):24-27 (in Chinese with English abstract).
[6] 卢彬, 刘鲜艳, 吴婉莉, 姚刚. 苹果园套种油菜绿肥试验研究. 陕西农业科学, 2017, 63(8):53-57.
Lu B, Liu X Y, Wu W L, Yao G. Study on Intercropping of green manure oilseed rape in apple orchard. Shaanxi J Agric Sci, 2017, 63(8):53-57 (in Chinese with English abstract).
[7] 罗庆川, 邹成华, 樊庆, 曾家玉, 饶勇. 适宜贵州山区种植的绿肥用油菜品种筛选. 农技服务, 2018, 35(1):78-79.
Luo Q C, Zou C H, Fan Q, Zeng J Y, Rao R. Selection of rapeseed varieties suitable for planting green fertilizer in Guizhou mountainous area. Agric Technol Service, 2018, 35(1):78-79 (in Chinese).
[8] 任涛, 鲁剑巍. 中国冬油菜氮素养分管理策略. 中国农业科学, 2016, 49: 3506-3521.
Ren T, Lu J W. Integrated nitrogen management strategy for winter oilseed rape (Brassica napus L.) in China. Sci Agric Sin, 2016, 49: 3506-3521 (in Chinese with English abstract).
[9] 郭子琪, 王慧, 韩上, 李敏, 雷之萌, 张军, 程文龙, 卜容燕, 武际, 朱林. 氮肥用量对直播油菜产量及氮素吸收利用的影响. 中国土壤与肥料, 2020, (5):40-44.
Guo Z Q, Wang H, Han S, Li M, Lei Z M, Zhang J, Cheng W L, Bu R Y, Wu J, Zhu L. Effect of nitrogen application rate on yield and nitrogen uptake and utilization of direct seeding rape. China Soils Fert, 2020, (5):40-44 (in Chinese with English abstract).
[10] 李华荣, 石乔龙, 龙冬仙, 陈永辉, 张宏源. 氮磷钾肥料对油菜产量及经济效益的影响. 现代农业科技, 2021, (3):25-26.
Li H R, Shi Q L, Long D X, Chen Y H, Zhang H Y. Effects of nitrogen, phosphorus and potassium on the yield and economic benefit of rape. Modern Agric Sci Technol, 2021, (3):25-26 (in Chinese).
[11] 翟荣荣, 余鹏, 叶胜海, 王俊梅, 吴明国, 林建荣, 朱国富, 张小明. 浙江省晚粳稻耐低氮品种的筛选和评价. 浙江大学学报(农业与生命科学版), 2016, 42: 565-572.
Zhai R R, Yu P, Ye S H, Wang J M, Wu M G, Lin J R, Zhu G F, Zhang X M. Screening and comprehensive evaluation of low nitrogen tolerance of Zhejiang photosensitive japonica rice cultivars. J Zhejiang Univ (Agric Life Sci Edn), 2016, 42: 565-572 (in Chinese with English abstract).
[12] 贵会平, 董强, 张恒恒, 王香茹, 庞念厂, 王准, 刘记, 郑苍松, 付小琼, 张西岭, 宋美珍. 棉花苗期耐低氮基因型初步筛选. 棉花学报, 2018, 30: 326-337.
Gui H P, Dong Q, Zhang H H, Wang X R, Pang N C, Wang H, Liu J, Zheng C S, Fu X Q, Zhang X L, Song M Z. Preliminary screening of low nitrogen-tolerant cotton genotypes at seedling stage. Cotton Sci, 2018, 30: 326-337 (in Chinese with English abstract).
[13] 张立媛, 琦明玉, 李志光, 张杰, 陈琪, 李红光, 赵敏. 不同谷子品种氮素吸收与利用差异的研究. 东北农业科学, 2021, 46(1):13-16.
Zhang L Y, Qi M Y, Li Z G, Zhang J, Chen Q, Li H G, Zhao M. Study on the difference of nitrogen uptake and utilization in different millet varieties. J Northeast Agric Sci, 2021, 46(1):13-16 (in Chinese with English abstract).
[14] 王准, 张恒恒, 董强, 贵会平, 王香茹, 庞念厂, 李永年, 牛静, 靳丁沙, 汪苏洁, 张西岭, 宋美珍. 棉花耐低氮和氮敏感种质筛选及验证. 棉花学报, 2020, 32: 538-551.
Wang Z, Zhang H H, Dong Q, Gui H P, Wang X G, Pang N C, Li Y N, Niu J, Jin D S, Wang S J, Zhang X L, Song M Z. Screening and verification of low nitrogen tolerant and nitrogen sensitive cotton germplasm. Cotton Sci, 2020, 32: 538-551 (in Chinese with English abstract).
[15] 李平芳, 毛东雪, 李艳秋, 王海涛, 王建峰. 不同基因型玉米品种耐低氮鉴定评价研究. 农业科技通讯, 2020, (9):115-120.
Li P F, Mao D X, Li Y Q, Wang H T, Wang J F. Screening and identification of low nitrogen tolerance in different maize genotypes. Bull Agric Sci Technol, 2020, (9):115-120 (in Chinese).
[16] 李发桥, 戴晓萧, 王伦伟, 夏小舟, 韦善清, 梁和, 江立庚. 广西主要水稻品种耐低肥能力评价与分类. 广东农业科学, 2019, 46(3):1-10.
Li F Q, Dai X X, Wang L W, Xia X Z, Wei S Q, Liang H, Jiang L G. Evaluation and classification of low fertility tolerance of main rice varieties in Guangxi. Guangdong Agric Sci, 2019, 46(3):1-10 (in Chinese with English abstract).
[17] 赵祥, 王学春, 吴凡, 杨国涛, 张杰, 陈永军, 彭友林, 邹挺, 李天春, 胡运高. 四川常用杂交稻品种对低氮胁迫的响应差异及其筛选方法. 应用与环境生物学报, 2019, 25: 909-917.
Zhao X, Wang X C, Wu F, Yang G T, Zhang J, Chen Y J, Peng Y L, Zou T, Li T C, Hu Y G. Differences in response of hybrid rice to low nitrogen stress and screening methods in Sichuan province. Chin J Appl Environ Biol, 2019, 25: 909-917 (in Chinese with English abstract).
[18] 钟思荣, 龚丝雨, 张世川, 陈仁霄, 刘齐元, 翟小清. 作物不同基因型耐低氮性和氮效率研究进展. 核农学报, 2018, 32: 1656-1663.
Zhong S R, Gong S Y, Zhang S C, Chen R X, Liu Q Y, Zhai X Q. Research progress on low nitrogen tolerance and nitrogen efficiency in crop plants. J Nucl Agric Sci, 2018, 32: 1656-1663 (in Chinese with English abstract).
[19] 张浩, 李双, 叶祥盛, 张丽梅, 徐芳森, 石磊, 丁广大. 甘蓝型油菜减氮增效潜力评价及种质资源筛选. 中国油料作物学报, 2021, 43: 195-202.
Zhang H, Li S, Ye X S, Zhang L M, Xu F S, Shi L, Ding G D. Evaluation on potential of reducing nitrogen and increasing efficiency for Brassica napus germplasm. Chin J Oil Crop Sci, 2021, 43: 195-202 (in Chinese with English abstract).
[20] 顾炽明, 韩配配, 胡琼, 李银水, 廖祥生, 张志华, 谢立华, 胡小加, 秦璐, 廖星. 甘蓝型油菜苗期氮效率评价. 中国油料作物学报, 2018, 40: 851-860.
Gu C M, Han P P, Hu Q, Li Y S, Liao X S, Zhang Z H, Xie L H, Hu X J, Qin L, Liao X. Nitrogen efficiency evaluation in rapeseed (Brassica napus L.) at seedling stage. Chin J Oil Crop Sci, 2018, 40: 851-860 (in Chinese with English abstract).
[21] 邹小云, 刘宝林, 李俊, 宋来强, 官春云. 甘蓝型油菜种质氮素营养效率的鉴定及评价指标筛选. 中国油料作物学报, 2018, 40: 247-257.
Zou X Y, Liu B L, Li J, Song L Q, Guan C Y. Identification and evaluation of nitrogen nutrition efficiency in rapeseed germplasms. Chin J Oil Crop Sci, 2018, 40: 247-257 (in Chinese with English abstract).
[22] 张玉莹, 安蓉, 曹兰芹, 伍晓明, 陈碧云, 高亚军. 不同氮素利用效率基因型油菜氮素营养性状的差异. 西北农林科技大学学报(自然科学版), 2014, 42(5):102-110.
Zhang Y Y, An R, Cao L Q, Wu X M, Chen B Y, Gao Y J. Differences in nitrogen traits of rapeseed (Brassica napus L.) genotypes with different nitrogen use efficiencies using pot experiment. J Northwest A&F Univ (Nat Sci Edn), 2014, 42(5):102-110 (in Chinese with English abstract).
[23] 智永祺, 郑琪, 周幸愿, 宣雪平. 吊瓜品种耐瘠性苗期鉴定初探. 浙江农业科学, 2021, 62: 256-257.
Zhi Y Q, Zheng Q, Zhou X Y, Xuan X P. Infertility tolerance evaluation of Trichosanthes kirilowii Maxim. varieties at seedling stage. J Zhejiang Agric Sci, 2021, 62: 256-257 (in Chinese with English abstract).
[24] 王瑞, 平俊爱, 张福耀, 詹鹏杰, 楚建强. 高粱育种资源耐瘠性鉴定及评价. 作物杂志, 2020, (6):30-37.
Wang R, Ping J A, Zhang F Y, Zhan P J, Chu J Q. Identification and evaluation of sorghum breeding resources for barren tolerance. Crops, 2020, (6):30-37 (in Chinese with English abstract).
[25] 何建文, 俞玮, 韩世玉, 邢丹, 詹永发, 杨红. 不同施肥水平对黔辣系列辣椒品种耐瘠性评价. 安徽农业科学, 2014, 42: 3203-3204.
He J W, Yu W, Han S Y, Xing D, Zhan Y F, Yang H. Infertility tolerance evaluation of pepper (Capsicum annuum L.) varieties of Qinla series under different fertilization levels. J Anhui Agric Sci, 2014, 42: 3203-3204 (in Chinese with English abstract).
[26] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. pp 30-169.
Bao S D. Soil Agrochemical Analysis, 3rd edn. Beijing: China Agriculture Press, 2000. pp 30-169(in Chinese).
[27] Fischer R A, Maurer R. Drought resistance in spring wheat cultivars. I grain yield responses. Aust J Agric Res, 1978, 29: 897-912.
doi: 10.1071/AR9780897
[28] Harvey P H. Hereditary variation in plant nutrition. Genetics, 1939, 24: 437-461.
doi: 10.1093/genetics/24.4.437 pmid: 17246932
[29] 李梁, 黄剑华, 陈志伟, 杜志钊, 高润红, 邹磊, 何婷. 作物耐低氮的相关生物学研究进展. 上海农业学报, 2012, 28(2):117-122.
Li L, Huang J H, Chen Z W, Du Z Z, Gao R H, Zou L, He T. Progress of biological research on crops tolerant to low nitrogen. Acta Agric Shanghai, 2012, 28(2):117-122 (in Chinese with English abstract).
[30] Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J, 1982, 74: 562-564.
doi: 10.2134/agronj1982.00021962007400030037x
[31] 于明磊, 秦智伟, 徐静静, 周秀艳. 黄瓜耐低氮基因型的筛选及遗传分析. 中国蔬菜, 2011, (12):46-51.
Yu M L, Qin Z W, Xu J J, Zhou X Y. Screening of cucumber genotypes with low-nitrogen tolerance and its genetic analysis. China Veget, 2011, (12):46-51 (in Chinese with English abstract).
[32] 陈凌, 王君杰, 王海岗, 曹晓宁, 刘思辰, 田翔, 秦慧彬, 乔治军. 耐低氮糜子品种的筛选及农艺性状的综合评价. 中国农业科学, 2020, 53: 3214-3224.
Chen L, Wang J J, Wang H G, Cao X N, Liu S C, Tian X, Qin H B, Qiao Z J. Screening of broomcorn millet varieties tolerant to low nitrogen stress and the comprehensive evaluation of their agronomic traits. Sci Agric Sin, 2020, 53: 3214-3224 (in Chinese with English abstract).
[33] 苗蓓. 陆地棉种质资源苗期氮效率评价及耐低氮种质筛选. 河北农业大学硕士学位论文, 河北保定, 2019.
Miao B. Screening of Upland Cotton Germplasm Resources Tolerant to Low Nitrogen and Evaluation of Their Nitrogen Efficiency at Seedling Stage. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2019 (in Chinese with English abstract).
[34] 王丹英, 彭建, 徐春梅, 赵锋, 章秀福. 油菜作绿肥还田的培肥效应及对水稻生长的影响. 中国水稻科学, 2012, 26: 85-91.
Wang D Y, Peng J, Xu C M, Zhao F, Zhang X F. Effects of rape straw manuring on soil fertility and rice growth. Chin J Rice Sci, 2011, 26: 85-91 (in Chinese with English abstract).
[35] 蒋美艳, 李秋红, 李延莉, 江建霞, 杨立勇, 周德平, 吴淑杭, 王伟荣. 播种量和播种期对上海绿肥油菜生物产量及养分积累的影响. 上海农业学报, 2021, 37(1):35-38.
Jiang M Y, Li Q H, Li Y L, Jiang J X, Yang L Y, Zhou D P, Wu S H, Wang W R. Effects of sowing rate and sowing date on biomass and nutrient accumulation of green manure rape in Shanghai. Acta Agric Shanghai, 2021, 37(1):35-38 (in Chinese with English abstract).
[36] 张盛南, 曹学浩, 张一为, 张鑫, 马超, 于海霞, 王永颖, 陈荣荣, 李泽青, 王鸿英. 天津市绿肥油菜利用研究进展. 天津农业科学, 2021, 27(1):76-78.
Zhang S N, Cao X H, Zhang Y W, Zhang X, Ma C, Yu H X, Wang Y Y, Chen R R, Li Z Q, Wang H Y. Studies progress on utilization of green fertilizer rapeseed in Tianjin. Tianjin Agric Sci, 2021, 27(1):76-78 (in Chinese with English abstract).
[37] 杨洋, 黎红亮, 陈志鹏, 廖柏寒, 曾清如. 郴州尾矿区不同油菜品种对重金属吸收积累特性的比较. 农业资源与环境学报, 2015, 32: 370-376.
Yang Y, Li H L, Chen Z P, Liao B H, Zeng Q R. Comparation of the uptake and accumulation of heavy metals by rape species grown in contaminated soil surrounding mining tails in Chenzhou, China. J Agric Resour Environ, 2015, 32: 370-376 (in Chinese with English abstract).
[38] 高菊生, 徐明岗, 董春华, 黄晶, 曹卫东, 曾希柏, 文石林, 聂军. 长期稻-稻-绿肥轮作对水稻产量及土壤肥力的影响. 作物学报, 2013, 39: 343-349.
doi: 10.3724/SP.J.1006.2013.00343
Gao J S, Xu M G, Dong C H, Huang J, Cao W D, Zeng X B, Wen S L, Nie J. Effects of long-term rice-rice-green manure cropping rotation on rice yield and soil fertility. Acta Agron Sin, 2013, 39: 343-349 (in Chinese with English abstract).
[39] 刘哲辉, 张利艳, 康继平, 张春雷. 旱作条件下油菜根茬对玉米两种土传病害的生防作用. 中国油料作物学报, 2017, 39: 674-680.
Liu Z H, Zhang L Y, Kang J P, Zhang C L. Bio-control effects of rapeseed stubbles on two soil-borne diseases of maize under dry-land planting system. Chin J Oil Crop Sci, 2017, 39: 674-680 (in Chinese with English abstract).
[1] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[2] LOU Hong-Xiang, JI Jian-Li, KUAI Jie, WANG Bo, XU Liang, LI Zhen, LIU Fang, HUANG Wei, LIU Shu-Yan, YIN Yu-Feng, WANG Jing, ZHOU Guang-Sheng. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(9): 1724-1740.
[3] ZHANG Jian, XIE Tian-Jin, WEI Xiao-Nan, WANG Zong-Kai, LIU Chong-Tao, ZHOU Guang-Sheng, WANG Bo. Estimation of feed rapeseed biomass based on multi-angle oblique imaging technique of unmanned aerial vehicle [J]. Acta Agronomica Sinica, 2021, 47(9): 1816-1823.
[4] WU Ya-Wei, PU Wei, ZHAO Bo, WEI Gui, KONG Fan-Lei, YUAN Ji-Chao. Characteristics of post-anthesis carbon and nitrogen accumulation and translocation in maize cultivars with different low nitrogen tolerance [J]. Acta Agronomica Sinica, 2021, 47(5): 915-928.
[5] GUO Qing-Yun, KUAI Jie, WANG Bo, LIU Fang, ZHANG Chun-Yu, LI Gen-Ze, ZHANG Yun-Yun, FU Ting-Dong, ZHOU Guang-Sheng. Effect of mixed-sowing of near-isogenic lines on the clubroot disease controlling efficiency in rapeseed [J]. Acta Agronomica Sinica, 2020, 46(9): 1408-1415.
[6] Qing-Yun GUO, Bo WANG, Jie KUAI, Chun-Yu ZHANG, Gen-Ze LI, Hui-Xian KANG, Ting-Dong FU, Guang-Sheng ZHOU. Controlling efficiency against clubroot disease of rapeseed by mixed-cropping of susceptible and resistant cultivars [J]. Acta Agronomica Sinica, 2020, 46(5): 725-733.
[7] LYU Wei-Sheng, XIAO Fu-Liang, ZHANG Shao-Wen, ZHENG Wei, HUANG Tian-Bao, XIAO Xiao-Jun, LI Ya-Zhen, WU Yan, HAN De-Peng, XIAO Guo-Bin, ZHANG Xue-Kun. Effects of sowing and fertilizing methods on yield and fertilizer use efficiency in red-soil dryland rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1790-1800.
[8] HU Mao-Long, CHENG Li, GUO Yue, LONG Wei-Hua, GAO Jian-Qin, PU Hui-Ming, ZHANG Jie-Fu, CHEN Song. Development and application of the marker for imidazolinone-resistant gene in Brassica napus [J]. Acta Agronomica Sinica, 2020, 46(10): 1639-1646.
[9] LI Yang,YAO Lu-Hua,GUO Xin,ZHAO Xiao,HUANG Lei,WANG Deng-Ke,ZHANG Xue-Feng,XIAO Qian-Lin,YANG Rui-Ji,GUO Yan-Jun. Chemical compositions of cuticular waxes on stems and leaves of three legume green manure crops [J]. Acta Agronomica Sinica, 2020, 46(01): 131-139.
[10] ZHANG Han-Xiao,LIN Shen,ZUO Qing-Song,YANG Guang,FENG Qian-Nan,FENG Yun-Yan,LENG Suo-Hu. Effects of plant density and N fertilizer spraying concentration on growth of rapeseed blanket seedlings [J]. Acta Agronomica Sinica, 2019, 45(11): 1691-1698.
[11] Chao MI,Yan-Ning ZHAO,Zi-Gang LIU,Qi-Xian CHEN,Wan-Cang SUN,Yan FANG,Xue-Cai LI,Jun-Yan WU. Cloning of RuBisCo Subunits Genes rbcL and rbcS from Winter Rapeseed (Brassica rapa) and Their Expression under Drought Stress [J]. Acta Agronomica Sinica, 2018, 44(12): 1882-1890.
[12] Quan ZHOU, Long-Chang WANG, Shu-Min MA, Xiao-Duan ZHANG, Yi XING, Sai ZHANG. Influences of Rape Intercropping with Chinese Milk Vetch and Straw Mulching on Productive Benefits in Dryland of Southwest China [J]. Acta Agronomica Sinica, 2018, 44(03): 431-441.
[13] Xiao-Yong LI, Min ZHOU, Tao WANG, Lan ZHANG, Guang-Sheng ZHOU, Jie KUAI. Effects of Planting Density on the Mechanical Harvesting Characteristics of Semi-winter Rapeseed [J]. Acta Agronomica Sinica, 2018, 44(02): 278-287.
[14] FANG Yan,SUN Wan-Cang,WU Jun-Yan,LIU Zi-Gang,DONG Yun,MI Chao,MA Li,CHEN Qi,HE Hui-Li. Response of Membrane Fatty Acid Composition and ATPase Activity in Brassica rapa L. to Temperature in North China [J]. Acta Agron Sin, 2018, 44(01): 95-104.
[15] YIN Neng-Wen**,LI Jia-Na**,LIU Xue,LIAN Jian-Ping,FU Chun,LI Wei,JIANG Jia-Yi,XUE Yu-Fei,WANG Jun,CHAI You-Rong*. Lignification Response and the Difference between Stem and Root of Brassica napus under Heat and Drought Compound Stress [J]. Acta Agron Sin, 2017, 43(11): 1689-1695.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!