Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (6): 1502-1515.doi: 10.3724/SP.J.1006.2022.13021

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates

CHEN Jing1(), REN Bai-Zhao1,2, ZHAO Bin1, LIU Peng1, ZHANG Ji-Wang1,2,*()   

  1. 1College of Agronomy, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
    2Shandong Maize Technology Innovation Center, Laizhou 261400, Shandong, China
  • Received:2021-04-07 Accepted:2021-09-09 Online:2022-06-12 Published:2021-10-09
  • Contact: ZHANG Ji-Wang E-mail:15650451831@163.com;jwzhang@sdau.edu.cn
  • Supported by:
    Shandong Province Key Research and Development Program(2021LZGC014-2);National Modern Agricultural Technology and Industry System(CARS-02-18);Shandong Central Guiding the Local Science and Technology Development(YDZX20203700002548)

Abstract:

In order to explore the regulation of leaf-spraying glycine betaine on yield formation and antioxidation in summer maize, Jingnongke 728 (JNK) and Denghai 618 (DH) were selected as experimental materials at three different sowing dates of June 5 (early sowing date, E), June 15 (normal sowing date, N), and June 25 (late sowing date, L) from 2019 to 2020. Besides, two leaf-spraying time treatments were conducted by using 10 mmol L-1 glycine betaine (GB) and clear water (CK) at V6 and V12 stages. The results showed that compared with CK, the yield of summer maize JNK and DH after spraying glycine betaine increased by 3.05%-12.81% and 2.08%-7.83%, respectively. The average total number of florets of JNK obtained in the different treatment of E, N, and L increased by 5.09%, 4.70%, and 2.27%, respectively, which was not notably changed among DH in 2019. In contrast, the average total number of florets of DH at the sowing dates of E, N, and L increased by 8.28%, 3.95%, 4.81%, respectively, which was not notably changed among JNK in 2020 after spraying betaine. The kernels per ear increased by 0.22%-6.45%, and the 100-kernel weight of E, N, and L increased by 0.88, 0.06, and -0.46 g, respectively. In addition, the activities of SOD, POD, and CAT increased by 1.23%, 3.36%, and 3.20%, respectively, while the content of MDA decreased by 11.73%. In conclusion, spraying betaine could reduce the yield difference at different sowing dates and was beneficial to improve the productivity of summer maize at different sowing dates.

Key words: summer maize, glycine betaine, yield, seed setting rate, grain filling

Fig. 1

Temperature, precipitation, and solar radiation during the summer maize growth stage from 2019 to 2020"

Fig. 2

Effects of glycine betaine on yield and yield components of summer maize at different sowing dates E-CK: June 5 as the control; N-CK: June 15 as the control; L-CK: June 25 as the control; E-GB: spraying glycine betaine on June 5; N-GB: spraying glycine betaine on June 15; L-GB: spraying glycine betaine on June 25. JNK: JNK728; DH: DH618. Values followed by different letters are significantly different at the 0.05 probability level."

Table 1

Variance analysis of yield and yield components of summer maize at different sowing dates after spraying glycine betaine"

变异来源
Source of variation
自由度
Degrees of freedom
产量
Yield
穗粒数
Kernels per ear
千粒重
1000-kernel weight
穗数
Harvest ear number
年份Year (Y) 1 ** ** ** **
播期 Sowing date (S) 2 ** ** ** **
品种 Hybrid (H) 1 ** ** ns **
甜菜碱 Glycine betaine (G) 1 ** ** * ns
S×G 2 ns ns ** **
S×H 2 ** ns ** **
H×G 1 ns ns ** ns
S×H×G 2 ns ns * ns

Table 2

Variation in yield and yield components of summer maize at different sowing dates after spraying glycine betaine (%)"

年份
Year
处理
Treatment
产量
Yield
穗粒数
Kernels per ear
千粒重
1000-kernel weight
穗数
Harvest ear number
单穗重
Weight per ear
单位面积穗粒数
Kernels per area
2019 E-JNK 12.81 a 1.83 cd 8.36 a 2.23 b 10.34 a 4.11 b
E-DH 2.08 d 2.29 cd -0.85 b 0.64 b 1.42 b 2.95 b
N-JNK 6.62 bc 4.43 bc 2.09 b 0.00 c 6.62 a 4.43 b
N-DH 2.83 d 6.07 a -4.43 c 1.44 b 1.37 b 7.60 ab
L-JNK 4.38 cd 0.27 d -5.85 c 10.58 a -5.60 c 10.87 a
L-DH 3.64 cd 0.22 d -5.33 c 9.23 a -5.12 c 9.48 a
2020 E-JNK 7.26 a 6.25 a 0.94 b 0.01 b 7.25 a 6.26 a
E-DH 7.16 a 6.67 a 0.63 b 0.07 b 7.34 a 6.49 a
N-JNK 4.75 ab 0.63 b 4.07 a 0.03 b 4.72 ab 0.66 b
N-DH 7.17 a 2.78 ab 4.19 a 0.08 b 7.08 a 2.86 b
L-JNK 3.05 b 3.45 ab -0.56 b 0.18 b 2.86 b 3.64 ab
L-DH 7.83 a 6.45 a 0.54 b 0.76 a 7.02 a 7.26 a

Table 3

Regression of the variation in yield and yield components"

项目
Item
标准化回归方程
Standardized regression
决定系数
R2
所有处理 All treatments Y = 0.837X1+1.469X2+1.220X3 0.9990**
6月5日播期Sowing date June 5 (E) Y = 0.576X1+1.403X2+0.271X3 0.9999**
6月15日播期Sowing date June 15 (N) Y = 1.162X1+1.231X2+2.105X3 0.9999**
6月25日播期Sowing date June 25 (L) Y = 1.585X1+2.016X2+2.104X3 0.9999**
京农科728 Jingnongke 728 Y = 0.698X1+1.453X2+1.208X3 0.9995**
登海618 Denghai 618 Y = 1.045X1+1.422X2+1.340X3 0.9992**

Fig. 3

Effects of glycine betaine on summer maize growth period at different sowing dates E-CK: June 5 as the control; N-CK: June 15 as the control; L-CK: June 25 as the control; E-GB: spraying glycine betaine on June 5; N-GB: spraying glycine betaine on June 15; L-GB: spraying glycine betaine on June 25; JNK: Jingnongke 728; DH: Denghai 618; SD: sowing date; VT: tasseling stage; R1: silking stage; R6: physiological maturity stage."

Fig. 4

Effects of glycine betaine on the number of total florets and total seed setting rate of summer maize in different sowing dates E-CK: June 5 as the control; N-CK: June 15 as the control; L-CK: June 25 as the control; E-GB: spraying glycine betaine on June 5; N-GB: spraying glycine betaine on June 15; L-GB: spraying glycine betaine on June 25; JNK: Jingnongke 728; DH: Denghai 618. Values followed by different letters are significantly different at the 0.05 probability level."

Fig. 5

Regression analysis of the total seed setting rate variation and the number of total floret variation JNK-N: the number of total florets of Jingnongke 728; JNK-T: the total seed setting rate of Jingnongke 728; DH-N: the number of total florets of Denghai 618; DH-T: the total seed setting rate of Denghai 618; JNK: Jingnongke 728; DH: Denghai 618. *: P < 0.05; **: P < 0.01."

Fig. 6

Effects of glycine betaine on dry weight and dry weight variation of 100-kernel in different sowing dates E-JNK: Jingnongke 728 on June 5; N-JNK: Jingnongke 728 on June 15; L-JNK: Jingnongke 728 on June 25; E-DH: Denghai 618 on June 5; N-DH: Denghai 618 on June 15; L-DH: Denghai 618 on June 25. CK: control check."

Fig. 7

Filling rate and filling rate variation of 100-kernel in different sowing dates Treatments and abbreviations are the same as those given in Fig. 6."

Fig. 8

Regression analysis of dry weight variation and total filling rate variation per 100 kernels JNK: Jingnongke 728; DH: Denghai 618. *: P < 0.05; **: P < 0.01."

Table 4

Effects of glycine betaine on ear characters of summer maize in different sowing dates"

年份
Year
处理
Treatment
畸形率
Abnormal ear rate (%)
穗长
Ear length (cm)
秃顶长
Barren ear length (cm)
穗粗
Ear diameter (cm)
秃尖比
Barren ear length/ ear length (%)
有效穗长
Effective ear length (cm)
2019 京农科728 Jingnongke 728
E-CK 27.16 a 17.57 a 1.54 b 4.62 bc 8.76 b 16.03 a
E-GB 13.03 b 17.59 a 1.47 b 4.56 c 8.36 b 16.12 a
N-CK 27.11 a 17.47 a 2.22 a 4.73 b 12.71 a 15.25 b
N-GB 12.49 b 17.5 a 2.19 a 4.82 b 12.51 a 15.31 b
L-CK 13.70 b 14.46 b 0.94 c 5.11 a 6.50 c 13.52 c
L-GB 28.08 a 14.46 b 0.75 c 5.01 a 5.19 c 13.71 c
登海618 Denghai 618
E-CK 15.56 b 17.17 a 0.34 c 4.6 b 1.98 d 16.83 a
E-GB 10.31 cd 17.05 a 0.21 c 4.49 c 1.23 d 16.84 a
N-CK 12.31 c 17.56 a 1.21 a 4.85 ab 6.89 a 16.35 a
N-GB 9.24 d 17.53 a 1.29 a 4.87 ab 7.36 a 16.24 a
L-CK 8.92 d 17.87 a 0.91 ab 4.95 a 5.09 b 16.96 a
L-GB 22.54 a 17.80 a 0.62 b 4.87 ab 3.48 c 17.18 a
2020 京农科728 Jingnongke 728
E-CK 7.22 c 16.67 a 1.49 a 4.57 c 8.94 a 15.18 a
E-GB 3.13 d 16.69 a 1.38 a 4.72 b 8.20 a 15.31 a
N-CK 9.38 c 16.77 a 1.53 a 4.79 b 9.12 a 15.24 a
N-GB 9.28 c 16.75 a 1.45 a 4.82 ab 8.76 a 15.30 a
L-CK 23.76 b 16.50 a 1.60 a 4.90 a 9.70 a 14.90 a
L-GB 26.04 a 16.86 a 1.50 a 4.85 a 8.90 a 15.36 a
年份
Year
处理
Treatment
畸形率
Abnormal ear rate (%)
穗长
Ear length (cm)
秃顶长
Barren ear length (cm)
穗粗
Ear diameter (cm)
秃尖比
Barren ear length/ ear length (%)
有效穗长
Effective ear length (cm)
登海618 Denghai 618
E-CK 6.19 b 18.48 a 0.67 b 4.67 b 3.63 d 17.81 ab
E-GB 2.97 c 18.63 a 0.63 b 4.65 b 4.99 c 18.00 a
N-CK 4.00 b 18.79 a 0.87 b 4.85 ab 4.63 c 17.92 a
N-GB 4.21 b 18.79 a 0.60 b 4.77 b 3.19 d 18.19 a
L-CK 13.59 a 18.44 a 1.64 a 4.90 a 8.89 a 16.80 b
L-GB 14.14 a 18.84 a 1.14 a 4.91 a 6.05 b 17.70 ab

Fig. 9

Effects of glycine betaine on the antioxidant properties of summer maize leaves CK: control check; GB: spraying glycine betaine. VT, VT+15, VT+30, and VT+45 represent tasseling stage and 15, 30, and 45 days after tasseling, respectively; R6: physiological maturity stage; *: P < 0.05."

Table 5

Meteorological conditions during the summer maize growth stage in different sowing dates"

年份
Year
处理
Treatment
日均温
DAT
(℃)
日均温I
DAT I
(℃)
日均温II
DAT II
(℃)
日均辐射
DAR
(MJ m-2)
日均辐射I
DAR I
(MJ m-2)
日均辐射II
DAR II
(MJ m-2)
总降雨
TP
(mm)
降雨天数I TPD I
(d)
降雨天数II TPD II
(d)
2019 E-JNK 25.96 27.30 24.53 16.16 18.62 13.80 206.50 12 31
E-DH 25.96 27.22 24.70 16.16 18.64 13.94 206.50 12 31
N-JNK 25.49 27.61 23.42 15.54 17.60 13.75 190.50 16 24
N-DH 25.45 27.65 23.43 15.53 17.77 13.68 190.50 15 25
L-JNK 24.54 27.24 22.09 14.78 15.90 13.80 182.00 24 17
L-DH 24.45 27.39 22.02 14.76 16.38 13.48 182.00 22 19
2020 E-JNK 25.42 25.05 25.81 14.57 15.40 13.69 221.20 37 42
E-DH 25.44 25.11 25.77 14.62 15.76 13.48 221.20 35 44
N-JNK 24.84 24.94 25.59 14.08 14.64 13.45 219.00 44 35
N-DH 24.89 24.87 24.91 14.15 14.57 13.74 219.00 43 36
L-JNK 24.01 25.54 22.72 13.56 14.11 13.10 200.50 46 28
L-DH 24.01 25.47 22.83 13.56 14.07 13.15 200.50 45 29

Table 6

Correlation analysis between yield, yield components, and meteorological conditions"

处理
Treatment
因子
Factor
产量
Yield
穗粒数
Kernels per ear
千粒重
1000-kernel weight
穗数
Harvest ear number
CK 日均温 DAT 0.075 -0.350** 0.195 0.349**
日均温I DAT I -0.404** 0.568** -0.640** -0.432**
日均温II DAT II 0.429** -0.734** 0.699** 0.658**
日均辐射 DAR -0.180 0.027 -0.190 -0.016
日均辐射I DAR I -0.182 0.101 -0.240 -0.029
日均辐射II DAR II -0.131 0.006 -0.078 -0.145
总降雨 TP 0.468** -0.805** 0.771** 0.687**
降雨天数I TPD I 0.291* -0.273* 0.389** 0.233
降雨天数II TPD II 0.462** -0.850** 0.802** 0.705**
GB 日均温 DAT 0.133 -0.206 0.207 0.371*
日均温I DAT I -0.463** 0.441** -0.637** -0.167
日均温II DAT II 0.509** -0.492** 0.693** 0.473**
日均辐射 DAR -0.163 0.063 -0.194 0.159
日均辐射I DAR I -0.177 0.116 -0.238 0.169
日均辐射II DAR II -0.114 0.041 -0.115 -0.097
总降雨 TP 0.556** -0.549** 0.763** 0.452**
降雨天数I TPD I 0.303* -0.212 0.388** -0.012
降雨天数II TPD II 0.553** -0.666** 0.830** 0.486**

Table 7

Correlation analysis between the variation of yield and yield components and meteorological conditions"

因子Factor Y X1 X2 X3
日均温 DAT 0.267 0.127 0.359 -0.301
日均温I DAT I -0.170 -0.289 -0.372 0.497*
日均温II DAT II 0.327 0.283 0.620* -0.663*
日均辐射 DAR 0.108 -0.140 0.071 0.092
日均辐射I DAR I 0.063 -0.119 0.013 0.109
日均辐射II DAR II 0.090 -0.247 0.073 0.154
总降雨 TP 0.354 0.312 0.662** -0.711**
降雨天数I TPD I 0.014 0.198 0.163 -0.312
降雨天数II TPD II 0.362 0.496 0.570* -0.721**
[1] He H Y, Hu Q, Li R, Pan X B, Huang B X, He Q J. Regional gap in maize production, climate and resource utilization in China. Field Crops Res, 2020, 254: 107830.
doi: 10.1016/j.fcr.2020.107830
[2] 中华人民共和国国家统计局. 中国统计年鉴(2020). 北京: 中国统计出版社, 2020. pp 383-389.
National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook (2020). Beijing: China Statistics Press, 2020. pp 383-389(in Chinese).
[3] 张镇涛, 杨晓光, 高继卿, 王晓煜, 白帆, 孙爽, 刘志娟, 明博, 谢瑞芝, 王克如, 李少昆. 气候变化背景下华北平原夏玉米适宜播期分析. 中国农业科学, 2018, 51: 3258-3274.
Zhang Z T, Yang X G, Gao J Q, Wang X Y, Bai F, Sun S, Liu Z J, Ming B, Xie R Z, Wang K R, Li S K. Analysis of suitable sowing date for summer maize in north China plain under climate change. Sci Agric Sin, 2018, 51: 3258-3274 (in Chinese with English abstract).
[4] Chen X X, Wang L C, Niu Z G, Zhang M, Li C A, Li J R。 The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China. Agric For Meteorol, 2020, 282/283: 107867.
doi: 10.1016/j.agrformet.2019.107867
[5] Santner A, Estelle M. Recent advances and emerging trends in plant hormone signaling. Nature, 2009, 459: 1071-1078.
doi: 10.1038/nature08122
[6] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应. 作物学报, 2020, 46: 1617-1627.
Ma Z B, Dong X R, Tang H H, Yan P, Lu L, Wang Q Y, Fang M Y, Wang Q, Dong Z Q. Effect of tetramethyl glutaric acid on summer maize photosynthesis characteristics. Acta Agron Sin, 2020, 46: 1617-1627 (in Chinese with English abstract).
[7] 卢霖, 董志强, 董学瑞, 李光彦. 乙矮合剂对不同密度夏玉米花粒期不同部位叶片衰老特性的影响. 作物学报, 2016, 42: 561-573.
doi: 10.3724/SP.J.1006.2016.00561
Lu L, Dong Z Q, Dong X R, Li G Y. Effects of Ethylene- chlormequat-potassium on characteristics of leaf senescence at different plant positions after anthesis under different planting densities. Acta Agron Sin, 2016, 42: 561-573 (in Chinese with English abstract).
[8] 张天鹏, 杨兴洪. 甜菜碱提高植物抗逆性及促进生长发育研究进展. 植物生理学报, 2017, 53: 1955-1962.
Zhang T P, Yang X H. Research on the mechanism of glycine betaine regulating plants stress resistance and development. Plant Physiol J, 2017, 53: 1955-1962 (in Chinese with English abstract).
[9] 刘禹辰, 杨德光, 李梁, 柴孟竹, 鞠然, 白冰, 刘宇龙. 低温胁迫对玉米种子萌发及淀粉分解酶类活性的影响. 玉米科学, 2018, 26(1):64-68.
Liu Y C, Yang D G, Li L, Chai M Z, Ju R, Bai B, Liu Y L. Effect of low temperature stress on maize seed germination and starch decomposition enzyme activity. J Maize Sci, 2018, 26(1):64-68 (in Chinese with English abstract).
[10] Storey R, Wyn Jone R G. Betaine and choline levels in plants and their relationship to NaCl stress. Plant Sci Lett, 1975, 4: 161.
doi: 10.1016/0304-4211(75)90090-5
[11] Shemi R, Wang R, Gheith E M S, Hussain H A, Hussain S, Irfan M, Cholidah L, Zhang K P, Zhang S, Wang L C. Effects of salicylic acid, zinc and glycine betaine on morpho-physiological growth and yield of maize under drought stress. Sci Rep, 2021, 11: 3195.
doi: 10.1038/s41598-021-82264-7
[12] 刘陈晨, 李旭, 任士伟, 陈海宁. 低温胁迫下外源甜菜碱对水稻秧苗期生长的影响. 江苏农业科学, 2019, 47(11):100-102.
Liu C C, Li X, Ren S W, Chen H N. Effects of exogenous glycine betaine on growth of rice seedlings under low temperature stress. J Jiangsu Agric Sci, 2019, 47(11):100-102 (in Chinese with English abstract).
[13] 杨晓云, 宋涛, 刘辉, 王红. 外源甜菜碱对NaCl胁迫下玉米幼苗生长和叶绿素含量的影响. 湖北农业科学, 2017, 56: 830-833.
Yang X Y, Song T, Liu H, Wang H. Effects of exogenous glycine betaine on the growth and chlorophyll content of maize seedlings under NaCl stress. J Hubei Agric Sci, 2017, 56: 830-833 (in Chinese with English abstract).
[14] 梁超. 过量积累甜菜碱改善小麦耐盐性的生理机制研究. 山东农业大学硕士学位论文, 山东泰安, 2007.
Liang C. Studies on Physiological Mechanisms of Over- accumulating Glycine Betaine in Improving the Salt Tolerance in Wheat. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2007 (in Chinese with English abstract).
[15] Chen T H H, Murata N. Glycine betaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ, 2011, 34: 1-20.
doi: 10.1111/pce.2011.34.issue-1
[16] Hamani A K M, Wang G S, Soothar M K, Shen X J, Gao Y, Qiu R J, Mehmood F. Responses of leaf gas exchange attributes, photosynthetic pigments and antioxidant enzymes in NaCl-stressed cotton (Gossypium hirsutum L.) seedlings to exogenous glycine betaine and salicylic acid. BMC Plant Biol, 2020, 20: 434.
doi: 10.1186/s12870-020-02624-9
[17] 李玉静, 宋宪亮, 杨兴洪, 刘娟, 李学刚, 朱玉庆, 孙学振, 王振林. 甜菜碱浸种对棉苗耐盐性的影响. 作物学报, 2008, 34: 305-310.
doi: 10.3724/SP.J.1006.2008.00305
Li Y J, Song X L, Yang X H, Liu J, Li X G, Zhu Y Q, Sun X Z, Wang Z L. Effects of seed soaking with glycine betaine on the salt tolerance of cotton seedlings. Acta Agron Sin, 2008, 34: 305-310 (in Chinese with English abstract).
[18] 许高平, 刘秀峰, 袁文娅, 王璞, 楼辰军, 杨兆顺. 水杨酸和甜菜碱浸种对低温干旱胁迫下玉米苗期生长的影响. 玉米科学, 2018, 26(6):50-56.
Xu G P, Liu X F, Yuan W Y, Wang P, Lou C J, Yang Z S. Effects of presoaking with salicylic acid and betaine on germination and seedling growth of maize under chilling and drought stresses. J Maize Sci, 2018, 26(6):50-56 (in Chinese with English abstract).
[19] Sulpice R, Tsukaya H, Nonaka H, Mustardy L, Chen T H H, Murata N. Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine. Plant J, 2003, 36: 165-176.
pmid: 14535882
[20] Park E J, Jeknić Z, Chen T H H, Murata N. The codA transgene for glycine betaine synthesis increases the size of flowers and fruits in tomato. Plant Biotechnol J, 2007, 5: 422-430.
doi: 10.1111/pbi.2007.5.issue-3
[21] Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot, 2007, 59: 206-216.
doi: 10.1016/j.envexpbot.2005.12.006
[22] 张泰, 谭廷鸿, 董庆坤, 张凯, 邱念伟. 乳熟期小麦喷施甜菜碱增产效果研究. 安徽农业科学, 2011, 39: 21621-21622.
Zhang T, Tan Y H, Dong Q K, Zhang K, Qiu N W. Study on the yield-increasing effect of foliar-application betaine to wheat during milk stage. J Anhui Agric Sci, 2011, 39: 21621-21622 (in Chinese with English abstract).
[23] 许晅, 李小艳, 张占芳, 周燮, 夏凯, 甘立军. 乙烯利-甜菜碱复配剂对玉米生长发育的影响. 玉米科学, 2014, 22(5):71-75.
Xu X, Li X Y, Zhang Z F, Zhou X, Xia K, Gan L J. Effects of mixture compound of ethephon and glycine betaine on the growth and development of maize. J Maize Sci, 2014, 22(5):71-75 (in Chinese with English abstract).
[24] 尹海龙, 田长彦. 根施甜菜碱对盐胁迫下玉米幼苗根系生长与光合特性的影响. 干旱区资源与环境, 2013, 27(9):113-118.
Yin H L, Tian C Y. Effects of root-applied betaine on the root growth and photosynthetic characteristics under salt stress in maize seedlings. J Arid Land Res Environ, 2013, 27(9):113-118 (in Chinese with English abstract).
[25] Giannopolitis C N, Ries S K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol, 1977, 59: 309-314.
doi: 10.1104/pp.59.2.309 pmid: 16659839
[26] Durner J, Klessing D F. Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem, 1996, 271: 28492-28502.
doi: 10.1074/jbc.271.45.28492 pmid: 8910477
[27] Hammerschmidt R, Nuckles E M, Kuc J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrchum lagenarium. Physiol Plant Pathol, 1982, 20: 73-82.
doi: 10.1016/0048-4059(82)90025-X
[28] 孟佳佳, 董树亭, 石德杨, 张海燕. 玉米雌穗分化与籽粒发育及败育的关系. 作物学报, 2013, 39: 912-918.
Meng J J, Dong S T, Shi D Y, Zhang H Y. Relationship of ear differentiation with kernel development and barrenness in maize (Zea mays L.). Acta Agron Sin, 2013, 39: 912-918 (in Chinese with English abstract).
[29] 金容, 李钟, 杨云, 周芳, 杜伦静, 李小龙, 孔凡磊, 袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响. 作物学报, 2020, 46: 614-630.
doi: 10.3724/SP.J.1006.2020.93034
Jin R, Li Z, Yang Y, Zhou F, Du L J, Li X L, Kong F L, Yuan J C. Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan. Acta Agron Sin, 2020, 46: 614-630 (in Chinese with English abstract).
[30] Chen T H H, Murata N. Glycine betaine: an effective protectant against abiotic stress in plants. Trends Plant Sci, 2008, 13: 499-505.
doi: 10.1016/j.tplants.2008.06.007
[31] 鱼海跃, 韩紫璇, 张钰石, 段留生, 张明才, 李召虎. 冠菌素对玉米籽粒灌浆特性与淀粉合成的调控效应. 作物学报, 2019, 45: 1535-1543.
Yu H Y, Han Z X, Zhang Y S, Duan L S, Zhang M C, Li Z H. Regulation of coronatine on the grain filling characteristics and starch synthesis in maize kernels. Acta Agron Sin, 2019, 45: 1535-1543 (in Chinese with English abstract).
[32] 李民华, 易永, 黄晚华, 黄安凤, 刘思华. 玉米灌浆中后期倒伏风灾指标及对产量的影响. 湖南农业大学学报(自然科学版), 2021, 47: 9-16.
Li M H, Yi Y, Huang W H, Huang A F, Liu S H. The lodging index of wind disaster in the middle and late grouting stages of maize and the effects on grain yield. J Hunan Agric Univ (Nat Sci Edn), 2021, 47: 9-16 (in Chinese with English abstract).
[33] 王永军, 杨今胜, 袁翠平, 柳京国, 李登海, 董树亭. 超高产夏玉米花粒期不同部位叶片衰老与抗氧化酶特性. 作物学报, 2013, 39: 2183-2191.
doi: 10.3724/SP.J.1006.2013.02183
Wang Y J, Yang J S, Yuan C P, Liu J G, Li D H, Dong S T. Characteristics of senescence and antioxidant enzyme activities in leaves at different plant parts of summer maize with the super-high yielding potential after anthesis. Acta Agron Sin, 2013, 39: 2183-2191 (in Chinese with English abstract).
[34] 丁梦秋. 花后高温干旱胁迫影响糯玉米叶片衰老的生理机制研究. 扬州大学硕士学位论文, 江苏扬州, 2019.
Ding M Q. Physiological Mechanism of Post-silking High Temperature and Drought Stress Affecting Leaf Senescence of Waxy Maize. MS Thesis of Yangzhou Agricultural University, Yangzhou, Jiangsu, China, 2019 (in Chinese with English abstract).
[35] 赵小强, 彭云玲, 方鹏, 武博洋, 闫慧萍. 不同外源调节物质对低温胁迫下玉米的缓解效应分析. 干旱地区农业研究, 2018, 36(3):184-193.
Zhao X Q, Peng Y L, Fang P, Wu B Y, Yan H P. Mitigation effect analysis of different exogenous regulatory substances on maize under low-temperature stress. Agric Res Arid Areas, 2018, 36(3):184-193 (in Chinese with English abstract).
[36] 侯鹏飞, 马俊青, 赵鹏飞, 张欢玲, 赵会杰, 刘华山, 赵一丹, 汪月霞. 外源甜菜碱对干旱胁迫下小麦幼苗叶绿体抗氧化酶及psbA基因表达的调节. 作物学报, 2013, 39: 1319-1324.
Hou P F, Ma J Q, Zhao P F, Zhang H L, Zhao H J, Liu H S, Zhao Y D, Wang Y X. Effects of betaine on chloroplast protective enzymes and psbA gene expression in wheat seedlings under drought stress. Acta Agron Sin, 2013, 39: 1319-1324 (in Chinese with English abstract).
[37] Zhou Z Q, Shi H Y, Fu Q, Li T X, Thian Y G, Liu S N. Assessing spatiotemporal characteristics of drought and its effects on climate-induced yield of maize in Northeast China. J Hydrol, 2020, 588: 125097.
doi: 10.1016/j.jhydrol.2020.125097
[38] 许晅. 乙烯利、甜菜碱和表油菜素内酯对玉米生长的影响. 南京农业大学硕士学位论文, 江苏南京, 2012.
Xu X. Effects of Ethephom, Glycine Betaing and Epibrassinolide on the Growth of Maize. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2012 (in Chinese with English abstract).
[39] 祁利潘, 陶洪斌, 周祥利, 吴景玉, 赵丽晓, 王璞. 化学药剂处理对灌浆期低温条件下玉米光合特性及产量的影响. 玉米科学, 2013, 21(3):52-56.
Qi L P, Tao H B, Zhou X L, Wu J Y, Zhao L X, Wang P. Effects of chemical regulation on maize photosynthesis and yield under low temperature stress during grain filling stage. J Maize Sci, 2013, 21(3):52-56 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[11] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[12] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[13] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[14] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[15] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!