Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (9): 2285-2299.doi: 10.3724/SP.J.1006.2022.12070

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates

ZHOU Qun1,2(), YUAN Rui1,2, ZHU Kuan-Yu1,2, WANG Zhi-Qin1,2, YANG Jian-Chang1,2,*()   

  1. 1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology / Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
    2. Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops / Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-10-12 Accepted:2022-01-05 Online:2022-09-12 Published:2022-07-15
  • Contact: YANG Jian-Chang E-mail:qunzhou19890812@163.com;jcyang@yzu.edu.cn
  • Supported by:
    Postgraduate Research and Innovation Program of Jiangsu Province(XKYCX17_052);National Natural Science Foundation of China(32071943)

Abstract:

The objective of this study is to investigate the characteristics of grain yield and nitrogen (N) absorption, distribution, utilization, and loss in indica/japonica hybrid rice under different N application rates. In 2018 and 2019, an indica/japonica hybrid rice cultivar Yongyou 2640 (YY2640), a high-yielding japonica inbred rice cultivar Lianjing 7 (LJ-7, CK 1) and a high-yielding inbred indica rice cultivar Yangdao 6 (YD-6, CK2) were grown in the field, with six N rates (0, 100, 200, 300, 400, 500 kg hm-2) and an 15N tracer micro-plot experiment. With the increase in N application rates, the grain yield of each test cultivar was increased first and then was decreased, and the highest grain yield was at the N rate of 400 kg hm-2 for YY2640 and 300 kg hm-2 for both check cultivars. At the same N rate, the grain yield of YY2640 was higher than that of either LJ-7 or YD-6. The 15N tracer experiment showed that when the rate of N application was less than 400 kg hm-2 for YY2640 and less than 300 kg hm-2 for LJ-7 and YD-6, the application of N increased the fertilizer-N accumulation in panicles at maturity stage, the accumulation of fertilizer-N in plants, residual-N in the soil, the contribution rate of fertilizer-N to aboveground plant-N accumulation, and the loss fertilizer-N into environment for all the test cultivars, whereas the contribution rate of soil-N to the plant-N accumulation, fertilizer-N absorption and utilization rate, and soil-N residue rate were decreased. At the same N rate, the amount of fertilizer-N accumulation in plants especially in panicles, the contribution rate of fertilizer-N to aboveground plant-N accumulation, fertilizer-N absorption and utilization rate were higher for YY2640 than for the two check cultivars. In contrast, the loss amount, loss rate, and the residue rate in the soil of fertilizer-N were lower for YY2640 than for the two check cultivars. Overall, 21.0%-35.7%, 6.7%-23.7%, and 42.3%-72.6% of fertilizer-N were absorbed by plants, remained in soil and lost to ecosystem, respectively. At the same N rate, compared with inbred rice cultivars, the indica/japonica hybrid rice cultivar YY2640 exhibited higher grain yield, N uptake, utilization, and less N loss. Under the conditions of the present experiment, N application rate of YY2640 for the synergistic increase of yield and N use efficiency was 300 kg hm-2, and the grain yield could reach 13.0 t hm-2.

Key words: indica-japonica hybrid rice, nitrogen application rate, grain yield, 15N tracer, nitrogen absorption and utilization

Table 1

Grain yield and its components of rice under different nitrogen rates"

年度/品种
Year/cultivar
施氮量
N rate
(kg hm-2)
产量
Grain yeild
(t hm-2)
穗数
Panicles
per m2
每穗粒数
Spikelets per panicle
总颖花数
Total spikelets
(×106 hm-2)
结实率
Filled grain
(%)
千粒重
1000-grain weight (g)
2018
甬优2640 0 7.6 ± 0.10 h 128.2 ± 2.9 k 267.2 ± 2.8 d 342.5 ± 5.2 k 87.6 ± 0.2 bc 25.4 ± 0.07 e
YY2640 100 9.6 ± 0.12 e 156.5 ± 2.2 i 289.4 ± 4.0 c 453.2 ± 6.0 f 86.3 ± 1.0 c 25.3 ± 0.18 e
200 11.7 ± 0.02 b 182.6 ± 3.3 h 317.3 ± 3.4 b 579.4 ± 8.8 c 85.7 ± 0.7 cd 25.3 ± 0.11 e
300 12.9 ± 0.07 a 192.3 ± 1.9 g 340.1 ± 5.9 a 654.0 ± 5.0 b 82.7 ± 0.6 e 24.9 ± 0.23 f
400 13.3 ± 0.16 a 200.6 ± 1.9 f 342.6 ± 3.0 a 687.3 ± 12.0 a 80.3 ± 0.5 f 24.5 ± 0.18 f
500 13.0 ± 0.13 a 205.1 ± 1.4 ef 336.2 ± 4.3 a 689.5 ± 6.2 a 78.2 ± 0.6 g 24.3 ± 0.13 f
连粳7号 0 6.4 ± 0.10 i 221.9 ± 2.1 d 119.9 ± 2.2 k 266.1 ± 4.4 m 91.0 ± 1.5 a 27.4 ± 0.20 c
LJ-7 100 8.3 ± 0.05 g 260.9 ± 1.9 c 131.9 ± 3.3 j 344.1 ± 7.9 k 90.6 ± 2.2 a 27.3 ± 0.25 c
200 10.1 ± 0.10 d 290.3 ± 1.1 b 154.0 ± 3.2 i 447.0 ± 5.8 g 89.3 ± 2.3 b 27.2 ± 0.14 cd
300 10.7 ± 0.11 c 308.2 ± 2.2 a 163.7 ± 4.6 h 504.1 ± 11.7 e 85.1 ± 2.0 d 26.6 ± 0.18 d
400 10.3 ± 0.16 cd 309.0 ± 1.6 a 165.4 ± 2.2 h 511.3 ± 8.5 d 82.1 ± 1.2 e 26.3 ± 0.16 d
500 9.6 ± 0.16 e 304.6 ± 1.3 a 162.9 ± 2.8 h 499.4 ± 4.7 e 80.6 ± 1.7 f 26.1 ± 0.23 d
扬稻6号 0 6.0 ± 0.02 j 139.1 ± 2.0 j 166.4 ± 2.3 h 231.4 ± 6.0 n 87.0 ± 1.2 c 30.9 ± 0.24 a
YD-6 100 7.3 ± 0.05 h 159.5 ± 3.2 i 185.0 ± 3.3 g 295.1 ± 7.1 l 85.9 ± 0.9 cd 30.5 ± 0.11 a
200 8.5 ± 0.11 g 183.8 ± 2.6 h 197.1 ± 4.3 f 362.3 ± 7.9 k 84.8 ± 1.4 d 30.1 ± 0.16 ab
300 9.4 ± 0.25 ef 205.3 ± 3.8 ef 207.2 ± 5.5 e 425.2 ± 11.3 h 83.5 ± 2.3 de 29.8 ± 0.14 b
400 9.1 ± 0.11 f 211.6 ± 1.6 e 197.7 ± 3.3 f 417.5 ± 9.5 i 82.3 ± 0.9 e 29.7 ± 0.13 b
500 8.6 ± 0.08 g 206.8 ± 1.5 ef 196.3 ± 2.0 f 404.7 ± 5.8 j 80.7 ± 2.6 f 29.5 ± 0.11 b
2019
甬优2640 0 7.4 ± 0.13 f 126.6 ± 3.6 k 266.7 ± 2.3 f 337.8 ± 6.4 k 87.4 ± 0.2 c 25.5 ± 0.04 e
YY2640 100 9.4 ± 0.15 d 154.3 ± 2.7 i 287.2 ± 3.3 e 443.1 ± 7.3 f 86.6 ± 1.2 cd 25.5 ± 0.10 e
200 11.6 ± 0.03 b 176.1 ± 4.0 h 325.0 ± 2.9 d 572.3 ± 10.9 c 85.8 ± 0.9 d 25.4 ± 0.06 e
300 13.1 ± 0.09 a 189.6 ± 2.4 g 340.9 ± 4.9 b 646.3 ± 6.2 b 83.4 ± 0.7 e 24.9 ± 0.13 f
400 13.4 ± 0.21 a 199.1 ± 2.3 f 341.0 ± 2.5 a 678.9 ± 14.8 a 81.8 ± 0.8 f 24.7 ± 0.10 f
500 13.2 ± 0.18 a 204.7 ± 1.7 ef 338.2 ± 3.6 c 692.3 ± 7.8 a 79.2 ± 0.8 g 24.4 ± 0.07 f
年度/品种
Year/cultivar
施氮量
N rate
(kg hm-2)
产量
Grain yeild
(t hm-2)
穗数
Panicles
per m2
每穗粒数
Spikelets per panicle
总颖花数
Total spikelets
(×106 hm-2)
结实率
Filled grain
(%)
千粒重
1000-grain weight (g)
连粳7号 0 6.3 ± 0.13 g 218.6 ± 2.6 d 118.7 ± 1.8 o 259.5 ± 5.4 m 91.4 ± 1.9 a 27.4 ± 0.11 c
LJ-7 100 8.3 ± 0.07 e 255.9 ± 2.3 c 132.7 ± 2.8 n 339.6 ± 9.8 k 90.8 ± 2.7 a 27.3 ± 0.14 c
200 10.1 ± 0.13 c 284.1 ± 1.4 b 154.1 ± 2.7 m 437.8 ± 7.1 f 89.3 ± 2.9 b 27.2 ± 0.08 c
300 10.5 ± 0.14 c 297.2 ± 2.6 a 164.9 ± 3.9 l 490.1 ± 14.2 de 85.3 ± 2.5 d 26.8 ± 0.10 d
400 10.3 ± 0.21 c 301.8 ± 1.9 a 165.1 ± 1.8 l 498.3 ± 10.3 d 82.3 ± 1.5 ef 26.5 ± 0.09 d
500 9.5 ± 0.21 d 297.2 ± 1.6 a 163.1 ± 2.3 l 481.3 ± 5.7 e 80.3 ± 2.1 g 26.3 ± 0.13 d
扬稻6号 0 6.0 ± 0.03 g 137.4 ± 2.5 j 167.5 ± 1.9 k 230.1 ± 7.5 n 87.2 ± 1.5 c 30.6 ± 0.13 a
YD-6 100 7.2 ± 0.07 f 158.2 ± 4.0 i 173.4 ± 2.6 j 274.3 ± 8.3 l 86.1 ± 1.1 d 30.5 ± 0.06 a
200 8.4 ± 0.14 e 186.8 ± 3.3 g 191.3 ± 3.5 i 357.3 ± 9.8 j 85.2 ± 1.8 d 30.3 ± 0.10 ab
300 9.3 ± 0.32 d 203.7 ± 4.7 ef 209.5 ± 4.6 g 426.8 ± 14.2 g 83.3 ± 2.9 e 29.9 ± 0.08 b
400 9.1 ± 0.15 d 208.4 ± 2.0 e 199.1 ± 2.8 h 414.9 ± 11.8 h 82.1 ± 1.1 ef 29.7 ± 0.11 b
500 8.6 ± 0.10 e 203.8 ± 1.9 ef 197.8 ± 1.7 h 403.1 ± 7.2 i 80.9 ± 3.3 fg 29.6 ± 0.06 b
方差分析Analysis of variance
年份Year (Y) NS NS NS NS NS NS
品种Cultivar (C) ** ** ** ** ** **
施氮量N rate (N) ** ** ** ** ** **
Y×C NS NS NS NS NS NS
Y×N NS NS NS NS NS NS
C×N ** ** ** ** ** *
Y×C×N NS NS NS NS NS NS

Fig. 1

Correlation of nitrogen uptake in plants between the 15N tracer micro-plot and the corresponding plot **: P < 0.01."

Table 2

Plant nitrogen uptake derived from fertilizer (PNdff), the plant N uptake derived from soil (PNdfs), the percentage of PNdff (PNdff%), and the percentage of PNdfs (PNdfs%) under different nitrogen rates"

年度/品种
Year/cultivar
施氮量
N rate
(kg hm-2)
氮吸收总量
Total N uptake
(kg hm-2)
植株吸收
肥料氮量
PNdff
(kg hm-2)
植株吸收
土壤氮量
PNdfs
(kg hm-2)
植株吸收
肥料氮率
PNdff
(%)
植株吸收
土壤氮率
PNdfs
(%)
2018
甬优2640 100 151.3 ± 2.7 f 36.2 ± 1.2 j 115.1 ± 0.9 e 23.9 ± 0.7 i 76.1 ± 0.9 a
YY2640 200 195.1 ± 5.6 d 58.0 ± 1.2 g 137.1 ± 4.0 c 29.7 ± 0.4 g 70.3 ± 1.6 c
300 237.5 ± 4.7 b 85.6 ± 1.3 d 151.9 ± 6.2 a 36.0 ± 0.7 f 64.0 ± 1.9 d
400 255.2 ± 6.5 a 109.2 ± 3.3 b 146.0 ± 2.5 b 42.8 ± 1.3 e 57.2 ± 0.1 e
500 258.7 ± 2.8 a 122.0 ± 0.9 a 138.7 ± 5.5 ab 46.4 ± 2.0 c 53.6 ± 1.2 h
连粳7号 100 139.8 ± 4.1 g 32.7 ± 0.3 l 107.1 ± 2.5 f 23.4 ± 0.7 i 76.6 ± 1.6 a
LJ-7 200 179.2 ± 3.5 e 50.2 ± 0.7 i 129.0 ± 4.4 d 28.0 ± 0.5 h 72.0 ± 0.6 b
300 205.6 ± 4.2 c 73.6 ± 0.4 f 132.0 ± 5.5 cd 35.8 ± 0.2 f 64.2 ± 2.6 d
400 208.5 ± 3.7 c 90.9 ± 1.9 c 117.6 ± 5.8 e 43.6 ± 0.3 d 56.4 ± 1.4 f
500 213.2 ± 5.2 c 107.7 ± 0.8 b 105.5 ± 1.2 f 50.5 ± 1.6 a 49.5 ± 1.5 j
扬稻6号 100 146.4 ± 3.4 f 34.6 ± 1.5 k 111.8 ± 5.5 e 23.6 ± 0.8 i 76.4 ± 1.4 a
YD-6 200 188.4 ± 3.8 d 55.2 ± 1.4 h 133.2 ± 5.5 cd 29.3 ± 1.1 g 70.7 ± 0.8 c
300 227.0 ± 4.9 b 81.0 ± 2.8 e 146.0 ± 3.4 b 35.7 ± 1.0 f 64.3 ± 1.9 d
400 231.7 ± 4.2 b 108.2 ± 0.8 b 133.5 ± 4.7 cd 44.8 ± 1.8 c 55.2 ± 1.8 g
500 235.2 ± 5.4 b 120.1 ± 5.9 a 129.1 ± 5.7 d 48.2 ± 0.5 b 51.8 ± 2.3 i
2019
甬优2640 100 152.8 ± 2.2 f 36.6 ± 0.2 j 116.2 ± 5.3 e 24.1 ± 0.3 i 75.9 ± 3.7 a
YY2640 200 198.4 ± 4.6 d 59.0 ± 2.6 g 139.4 ± 6.8 c 30.2 ± 1.4 g 69.8 ± 2.0 c
300 243.9 ± 3.9 b 87.9 ± 1.0 d 156.0 ± 7.3 a 37.0 ± 1.9 f 63.0 ± 2.3 d
400 257.8 ± 5.3 a 107.3 ± 3.6 b 150.5 ± 2.3 ab 41.6 ± 1.0 e 58.4 ± 2.6 e
500 261.9 ± 2.3 a 123.5 ± 2.7 a 138.4 ± 1.0 b 47.2 ± 1.3 c 52.8 ± 2.1 g
连粳7号 100 141.6 ± 3.3 g 33.1 ± 1.6 l 108.5 ± 4.7 f 23.7 ± 0.4 i 76.3 ± 0.5 a
LJ-7 200 181.1 ± 2.8 e 50.7 ± 1.9 i 130.4 ± 6.5 d 28.3 ± 1.1 h 71.7 ± 2.4 b
300 203.8 ± 3.3 c 73.0 ± 2.5 f 130.8 ± 3.3 cd 35.5 ± 1.5 f 64.5 ± 1.5 d
400 213.1 ± 3.0 c 92.9 ± 2.1 c 120.2 ± 2.0 e 44.6 ± 1.0 d 55.4 ± 2.5 f
500 216.5 ± 4.2 c 109.4 ± 3.2 b 107.1 ± 5.0 f 51.3 ± 0.1 a 48.7 ± 0.8 i
扬稻6号 100 146.1 ± 2.7 f 34.5 ± 0.6 k 111.6 ± 1.2 e 23.6 ± 1.1 i 76.4 ± 0.7 a
YD-6 200 189.7 ± 3.1 d 55.6 ± 1.3 h 134.1 ± 5.2 cd 29.5 ± 0.8 g 70.5 ± 2.5 c
300 230.7 ± 4.0 b 82.3 ± 2.8 e 148.4 ± 1.6 b 36.3 ± 0.1 f 63.7 ± 1.1 d
400 232.8 ± 3.4 b 108.7 ± 0.7 b 134.1 ± 4.0 cd 45.0 ± 0.2 c 55.0 ± 1.4 f
500 235.8 ± 4.3 b 120.4 ± 3.0 a 129.4 ± 3.2 d 48.3 ± 0.2 b 51.7 ± 2.3 h
方差分析Analysis of variance
年份Year (Y) NS NS NS NS NS
品种Cultivar (C) ** ** ** * *
施氮量N rate (N) ** ** ** ** **
Y×C NS NS NS NS NS
Y×N NS NS NS NS NS
C×N ** ** ** ** **
Y×C×N NS NS NS NS NS

Fig. 2

Soil nitrogen availability “A” value under different N rates for each test rice variety in 2018 (A) and 2019 (B) Vertical bar represents mean ± SD (n = 3). YY2640: Yongyou 2640; LJ-7: Liangjing 7; YD-6: Yangdao 6."

Table 3

Distribution of fertilizer-derived nitrogen in the shoot of rice at maturity stage under different nitrogen rates"

年度/品种
Year/cultivar
施氮量
N rate
(kg hm-2)
肥料氮分配量
Fertilizer-derived N distribution (kg hm-2)
肥料氮的分配率
Distribution rate of fertilizer-derived N in plants (%)
茎鞘
Stem sheath

Leaf

Ear
茎鞘
Stem sheath

Leaf

Ear
2018
甬优2640 100 7.8 ± 0.4 n 3.0 ± 0.1 l 25.4 ± 0.4 j 21.5 ± 0.5 n 8.3 ± 0.3 h 70.2 ± 0.4 a
YY2640 200 14.9 ± 0.3 k 4.2 ± 0.2 j 38.9 ± 1.4 c 25.7 ± 1.0 m 7.2 ± 0.2 i 67.1 ± 0.1 b
300 25.6 ± 0.6 h 6.1 ± 0.1 h 53.8 ± 1.0 b 29.9 ± 1.2 k 7.1 ± 0.3 i 62.9 ± 0.9 c
400 36.8 ± 1.1 e 10.8 ± 0.3 e 61.6 ± 0.3 a 33.7 ± 0.7 i 9.9 ± 0.1 f 56.4 ± 2.4 f
500 46.2 ± 0.3 c 15.0 ± 0.4 c 60.7 ± 1.9 a 37.9 ± 0.9 f 12.3 ± 0.4 d 49.8 ± 1.2 i
连粳7号 100 9.1 ± 0.1 m 3.5 ± 0.2 k 20.1 ± 0.2 k 27.8 ± 1.1 l 10.7 ± 0.1 e 61.5 ± 1.5 d
LJ-7 200 17.3 ± 0.4 j 4.8 ± 0.1 i 28.2 ± 0.6 i 34.4 ± 0.7 h 9.5 ± 0.4 fg 56.1 ± 0.2 f
300 27.7 ± 0.6 g 7.2 ± 0.2 g 38.7 ± 0.7 c 37.6 ± 0.3 f 9.8 ± 0.1 f 52.6 ± 0.6 h
400 40.8 ± 0.7 d 12.5 ± 0.1 d 37.6 ± 1.0 d 44.9 ± 1.9 d 13.8 ± 0.3 c 41.4 ± 1.3 k
500 54.0 ± 0.8 b 18.7 ± 0.3 b 35.0 ± 1.3 g 50.1 ± 0.9 b 17.4 ± 0.2 a 32.5 ± 1.4 m
扬稻6号 100 11.2 ± 0.5 l 3.6 ± 0.1 k 19.8 ± 0.9 k 32.4 ± 1.6 j 10.4 ± 0.4 e 57.2 ± 1.9 e
YD-6 200 20.0 ± 0.3 i 5.1 ± 0.2 i 30.1 ± 0.6 h 36.2 ± 1.3 g 9.2 ± 0.4 g 54.5 ± 2.4 g
300 34.2 ± 1.5 f 10.0 ± 0.4 f 36.8 ± 1.3 e 42.2 ± 0.1 e 12.3 ± 0.4 d 45.4 ± 2.1 j
400 53.7 ± 0.9 b 18.3 ± 0.5 b 36.2 ± 0.3 f 49.6 ± 0.3 c 16.9 ± 0.8 b 33.5 ± 1.6 l
500 55.9 ± 1.1 a 19.4 ± 0.2 a 34.9 ± 0.2 g 50.7 ± 2.3 a 17.6 ± 0.2 a 31.7 ± 1.2 n
2019
甬优2640 100 7.5 ± 0.3 n 2.8 ± 0.2 l 24.8 ± 0.6 j 21.4 ± 0.7 n 8.0 ± 0.3 h 70.7 ± 2.4 a
YY2640 200 14.6 ± 0.3 k 4.1 ± 0.1 j 38.6 ± 1.6 c 25.5 ± 0.8 m 7.2 ± 0.2 i 67.4 ± 0.3 b
300 25.2 ± 0.4 h 6.0 ± 0.2 h 53.8 ± 1.0 b 29.6 ± 0.8 k 7.1 ± 0.1 i 63.3 ± 1.8 c
400 35.9 ± 0.2 e 10.6 ± 0.1 e 61.1 ± 2.1 a 33.4 ± 1.4 i 9.9 ± 0.3 f 56.8 ± 1.7 f
500 45.3 ± 2.1 c 14.8 ± 0.3 c 60.5 ± 0.5 a 37.6 ± 0.2 f 12.3 ± 0.1 d 50.2 ± 2.4 i
连粳7号 100 8.9 ± 0.1 m 3.4 ± 0.1 k 20.1 ± 0.8 k 27.5 ± 0.8 l 10.5 ± 0.3 e 62.0 ± 0.9 d
LJ-7 200 17.2 ± 0.3 j 4.7 ± 0.2 i 28.4 ± 0.1 i 34.2 ± 0.2 h 9.3 ± 0.1 g 56.5 ± 1.2 f
300 26.6 ± 0.3 g 6.9 ± 0.1 g 37.8 ± 0.9 c 37.3 ± 0.3 f 9.7 ± 0.5 f 53.0 ± 0.7 h
400 39.0 ± 1.8 d 11.6 ± 0.2 d 36.1 ± 1.5 d 45.0 ± 0.1 d 13.4 ± 0.4 c 41.6 ± 1.4 k
500 51.8 ± 1.6 b 17.1 ± 0.3 b 34.3 ± 0.2 g 50.2 ± 0.8 b 16.6 ± 0.1 b 33.2 ± 1.7 m
扬稻6号 100 11.1 ± 0.5 l 3.5 ± 0.1 k 19.9 ± 0.8 k 32.2 ± 1.0 j 10.1 ± 0.1 ef 57.7 ± 1.3 e
YD-6 200 20.7 ± 0.3 i 5.2 ± 0.3 i 31.6 ± 0.9 h 36.0 ± 1.1 g 9.0 ± 0.4 g 55.0 ± 2.8 g
300 33.9 ± 0.5 f 9.9 ± 0.2 f 37.1 ± 1.0 e 41.9 ± 1.3 e 12.2 ± 0.3 d 45.9 ± 0.4 j
400 50.6 ± 2.5 b 17.6 ± 0.7 b 35.3 ± 0.7 f 48.9 ± 0.1 c 17.0 ± 0.7 b 34.1 ± 1.5 l
500 56.4 ± 0.3 a 20.2 ± 0.6 a 34.2 ± 1.0 g 50.9 ± 0.3 a 18.2 ± 0.8 a 30.9 ± 0.3 n
方差分析Analysis of variance
年份Year (Y) NS NS NS NS NS NS
品种Cultivar (C) ** ** ** ** ** **
施氮量N rate (N) ** ** ** ** ** **
Y×C NS NS NS NS NS NS
Y×N NS NS NS NS NS NS
C×N ** ** ** ** ** **
Y×C×N NS NS NS NS NS NS

Table 4

Recovery efficiency (RE-15N), residual percentage in the soil (NRS%), and the loss percentage of 15N-labeled N fertilizer (Loss%) under different nitrogen rates"

年度/品种
Year/cultivar
施氮量
N rate (kg hm-2)
肥料氮吸收利用率
RE-15N (%)
肥料氮土壤残留率
NRS (%)
肥料氮损失率
Loss (%)
2018
甬优2640 100 36.2 ± 0.4 a 21.1 ± 0.3 c 42.7 ± 1.3 h
YY2640 200 29.0 ± 1.1 d 12.4 ± 0.6 f 58.7 ± 1.5 f
300 28.5 ± 0.9 d 9.2 ± 0.1 i 62.3 ± 3.1 d
400 27.3 ± 0.6 ef 7.6 ± 0.4 k 65.1 ± 0.8 c
500 24.4 ± 0.1 hi 7.0 ± 0.1 m 68.6 ± 2.4 b
连粳7号 100 32.7 ± 0.4 c 23.7 ± 0.2 a 43.6 ± 0.2 g
LJ-7 200 25.1 ± 0.1 g 15.4 ± 0.1 d 59.5 ± 1.7 e
300 24.5 ± 0.7 h 11.0 ± 0.5 g 64.5 ± 1.5 c
400 22.7 ± 0.8 j 8.8 ± 0.2 j 68.5 ± 0.8 b
500 21.5 ± 0.3 k 7.4 ± 0.3 l 71.1 ± 0.4 a
扬稻6号 100 34.6 ± 1.5 b 23.1 ± 1.0 b 42.3 ± 1.8 h
YD-6 200 27.6 ± 1.4 e 13.8 ± 0.4 e 58.6 ± 2.1 f
300 27.0 ± 0.9 f 10.5 ± 0.2 h 62.5 ± 2.8 d
400 27.0 ± 0.6 f 8.6 ± 0.1 j 64.4 ± 0.8 c
500 24.0 ± 0.6 i 7.3 ± 0.1 l 68.7 ± 0.8 b
2019
甬优2640 100 35.2 ± 1.3 a 20.9 ± 0.9 c 43.9 ± 1.4 j
YY2640 200 28.6 ± 0.3 d 11.9 ± 0.1 f 59.5 ± 0.4 h
300 28.3 ± 0.7 d 9.0 ± 0.1 i 62.7 ± 1.4 g
400 26.9 ± 0.5 e 7.0 ± 0.1 j 66.1 ± 2.5 f
500 24.1 ± 0.5 h 6.4 ± 0.1 k 69.5 ± 2.8 c
连粳7号 100 32.5 ± 1.2 c 23.6 ± 0.4 a 43.9 ± 0.4 j
LJ-7 200 25.2 ± 0.9 g 15.5 ± 0.7 d 59.3 ± 2.5 h
300 23.8 ± 1.1 i 9.8 ± 0.1 h 66.4 ± 1.4 f
400 21.7 ± 0.2 j 6.6 ± 0.1 k 71.7 ± 1.1 b
500 20.6 ± 0.5 k 5.2 ± 0.1 l 74.2 ± 1.4 a
扬稻6号 100 34.6 ± 0.3 b 23.1 ± 0.4 b 42.3 ± 0.1 k
YD-6 200 28.7 ± 1.3 d 14.9 ± 0.7 e 56.4 ± 2.1 i
300 26.9 ± 0.8 e 10.4 ± 0.2 g 62.7 ± 2.4 g
400 25.9 ± 1.3 f 7.0 ± 0.3 j 67.1 ± 3.2 e
500 24.0 ± 0.3 hi 7.3 ± 0.3 j 68.7 ± 0.6 d
方差分析Analysis of variance
年份Year (Y) NS NS NS
品种Cultivar (C) ** ** **
施氮量N rate (N) ** ** **
Y×C NS NS NS
Y×N NS NS NS
C×N * ** *
Y×C×N NS NS NS

Fig. 3

Plant nitrogen accumulation derived from fertilizer (PNdff) (A, B), the N residual amount in soil (NRS) (C, D), and the uncounted N loss (E, F) under different N rates Vertical bar represents mean ± SD (n = 3). YY2640: Yongyou 2640; LJ-7: Liangjing 7; YD-6: Yangdao 6. PNdff: plant nitrogen accumulation derived from fertilizer; NRS: nitrogen residual amount in soil; N loss: nitrogen loss amount of 15N labeled fertilizer."

Fig. 4

Effects of nitrogen rates on the normalized values of grain yield, total N uptake (TN), and N loss at maturity stage in 2018 (A) and 2019 (B) Vertical bar represents mean ± SD (n = 3). The normalization is carried out by calculating the natural logarithm (1n) of the ratio of values under each nitrogen rate relative to that value under 100 kg hm-2. YY2640: Yongyou 2640; LJ-7: Liangjing 7; YD-6: Yangdao 6; TN: total nitrogen uptake; N loss: nitrogen loss amount of 15N labeled fertilizer."

Fig. 5

Ecological satisfactory rate of chemical fertilizer nitrogen application for the indica/japoinica rice cultivar Yongyou 2640 in 2018 (A) and 2019 (B) N loss: nitrogen loss amount of 15N labeled fertilizer."

[1] FAOSTAT. FAO Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations, Rome, 2019 [2021-10-07]. http://www.fao.org/.
[2] International Rice Research Institute. Rice Almanac, Fourth edition. Manila, Philippines: International Rice Research Institute, 2013. pp 1-64. https://www.irri.org/.
[3] Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Prod Sci, 2009, 12: 3-8.
doi: 10.1626/pps.12.3
[4] 国家统计局. 国家统计局关于2020年粮食产量数据的公告. 2020 [2021-10-07]. http://www.stats.gov.cn
National Bureau of Statistics, Announcement of the National Bureau of Statistics on grain production data in 2020 [2021-10-07]. http://www.stats.gov.cn. (in Chinese)
[5] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45: 915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008, 45: 915-924. (in Chinese with English abstract)
[6] Zhang F S, Chen X P, Vitousek P. An experiment for the world. Nature, 2013, 497: 33-35.
doi: 10.1038/497033a
[7] Liu L J, Chen T T, Wang Z Q, Zhang H, Yang J C, Zhang J H. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crops Res, 2013, 154: 226-235.
doi: 10.1016/j.fcr.2013.08.016
[8] Peng S B, Buresh R J, Huang J L, Zhong X H, Zou J C, Wang G H, Liu Y Y, Hu R F, Tang K H, Zhang F S, Dobermann A. Improving nitrogen fertilization in rice by site-specific N management. Agron Sustain Dev, 2010, 30: 649-656.
doi: 10.1051/agro/2010002
[9] Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christie P, Zhu Z L, Zhang F S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA, 2009, 106: 3041-3046.
doi: 10.1073/pnas.0813417106
[10] Peng S B, Buresh R J, Huang J L, Yang J C, Zou Y B, Zhong X H, Wang G H, Zhang F S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res, 2006, 96: 37-47.
doi: 10.1016/j.fcr.2005.05.004
[11] Xue Y G, Duan H, Liu L J, Wang Z Q, Yang J C, Zhang J H. An improved crop management increases grain yield and nitrogen and water use efficiency in rice. Crop Sci, 2013. 53: 271-284.
doi: 10.2135/cropsci2012.06.0360
[12] Cui Z L, Zhang H Y, Chen X P, Zhang C C, Ma W Q, Huang C D, Zhang W F, Mi G H, Miao Y X, Li X L, Gao Q, Yang J C, Wang Z H, Ye Y L, Guo S W, Lu J W, Huang J L, Lu S H, Sun Y X, Liu Y Y, Peng X L, Ren J, Li S Q, Deng X P, Shi X J, Zhang Q, Yang Z P, Tang L, Wei C Z, Jia L L, Zhang J W, He M R, Tong Y A, Tang Q Y, Zhong X H, Liu Z H, Cao N, Kou C L, Ying H, Yin Y L, Jiao X Q, Zhang Q S, Fan M S, Jiang R F, Zhang F S, Dou Z X. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555: 363-367.
doi: 10.1038/nature25785
[13] Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010, 327: 1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[14] 王飞, 彭少兵. 水稻绿色高产栽培技术研究进展. 生命科学, 2018, 30: 1129-1136.
Wang F, Peng S B. Research progress in rice green and high-yield management practices. Chin Life Sci Bull, 2018, 30: 1129-1136. (in Chinese with English abstract)
[15] Ma G H, Yuan L P. Hybrid rice achievements, development and prospect in China. J Integr Agric, 2015, 14: 197-205.
doi: 10.1016/S2095-3119(14)60922-9
[16] 袁隆平. 两系法杂交水稻研究的进展. 中国农业科学, 1990, 23: 1-6.
Yuan L P. Progress of two-line hybrid rice breeding. Sci Agric Sin, 1990, 23: 1-6. (in Chinese with English abstract)
[17] 林建荣, 宋昕蔚, 吴明国, 程式华. 籼粳超级杂交稻育种技术创新与品种培育. 中国农业科学, 2016, 49: 207-218.
Lin J R, Song X W, Wu M G, Cheng S H. Breeding technology innovation of indica-japonica super hybrid rice and varietal breeding. Sci Agric Sin, 2016, 49: 207-218. (in Chinese with English abstract)
[18] 桂君梅, 王林友, 范小娟, 祁永斌, 张礼霞, 范宏环, 金庆生, 王建军. 基于InDel分子标记的籼粳杂交稻与粳粳杂交稻的杂种优势比较研究. 中国农业科学, 2016, 49: 219-231.
Gui J M, Wang L Y, Fan X J, Qi Y B, Zhang L X, Fan H H, Jin Q S, Wang J J. Comparison the heterosis of indica-japonica hybrids and japonica-japonica hybrids using InDel markers. Sci Agric Sin, 2016, 49: 219-231. (in Chinese with English abstract)
[19] Wang D Y, Xu C M, Yan J X, Zhang X G, Chen S, Chauhan B S, Wang L, Zhang X F. 15N tracer-based analysis of genotypic differences in the uptake and partitioning of N applied at different growth stages in transplanted rice. Field Crops Res, 2017, 211: 27-36.
doi: 10.1016/j.fcr.2017.06.017
[20] 李鹏飞, 李小坤, 侯文峰, 任涛, 丛日环, 杜昌文, 邢烈火, 王少华, 鲁剑巍. 应用15N示踪技术研究控释尿素在稻田中的去向及利用率. 中国农业科学, 2018, 51: 3961-3971.
Li P F, Li X K, Hou W F, Ren T, Cong R H, Du C W, Xing L H, Wang S H, Lu J W. Studying the fate and recovery efficiency of controlled release urea in paddy soil using 15N tracer technique. Sci Agric Sin, 2018, 51: 3961-3971. (in Chinese with English abstract)
[21] 曹亚澄, 张金波, 温腾. 稳定同位素示踪技术与质谱分析——在土壤、生态、环境研究中的应用. 北京: 科学出版社, 2018. pp 128-144.
Cao Y C, Zhang J B, Wen T. Stable Isotope Tracer Technique and Mass Spectrometry:Application in Soil, Ecology and Environment Research. Beijing: Science Press, 2018. pp 128-144. (in Chinese)
[22] Xiong D L, Ling X X, Huang J L, Peng S B. Meta-analysis and dose-response analysis of high temperature effects on rice yield and quality. Environ Exp Bot, 2017, 141: 1-9.
doi: 10.1016/j.envexpbot.2017.06.007
[23] 刘竞妍, 张可, 王桂华. 综合评价中数据标准化方法比较研究. 数字技术与应用, 2018, 36(6): 84-85.
Liu J K, Zhang K, Wang G H. Comparative study on data standardization methods in comprehensive evaluation. Digit Technol Appl, 2018, 36(6): 84-85. (in Chinese with English abstract)
[24] 王静. 氮肥运筹对长江中游中稻产量、氮肥利用率和氮素损失影响的研究. 华中农业大学博士学位论文, 湖北武汉, 2019.
Wang J. The Effects of Nitrogen Management on Grain Yield, Nitrogen Use Efficiency and Nitrogen Loss of Middle Rice in the Middle of Yangtze River Basin of China. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2019. (in Chinese with English abstract)
[25] Yoshida H, Horic T, Shiraiwa T. A model explaining genotypic and environment variation of rice spikelet number per unit area measured by cross-location experiments in Asia. Field Crops Res, 2006, 97: 337-343.
doi: 10.1016/j.fcr.2005.11.004
[26] Zhang H, Yu C, Kong X S, Hou D P, Gu J F, Liu L J, Wang Z Q, Yang J C. Progressive integrative crop managements increase grain yield, nitrogen use efficiency and irrigation water productivity in rice. Field Crops Res, 2018, 215: 1-11.
doi: 10.1016/j.fcr.2017.09.034
[27] 杨建昌, 王朋, 刘立军, 王志琴, 朱庆森. 中籼水稻品种产量与株型演进特征研究. 作物学报, 2006, 32: 949-955.
Yang J C, Wang P, Liu L J, Wang Z Q, Zhu Q S. Evolution characteristics of grain yield and plant type for mid-season indica cultivars. Acta Agron Sin, 2006, 32: 949-955. (in Chinese with English abstract)
[28] 杨惠杰, 李义珍, 杨仁崔, 姜照伟, 郑景生. 超高产水稻的干物质生产特性研究. 中国水稻科学, 2001, 15(4): 26-31.
Yang H Z, Li Y Z, Yang R C, Jiang Z W, Zheng J S. Dry matter production characteristics of super high yielding rice. Chin J Rice Sci, 2001, 15(4): 26-31. (in Chinese with English abstract)
[29] 张耗, 谈桂露, 薛亚光, 王志琴, 刘立军, 杨建昌. 江苏省粳稻品种近60年演进过程中产量与形态生理特征的变化. 作物学报, 2010, 36: 133-140.
doi: 10.3724/SP.J.1006.2010.00133
Zhang H, Tan G L, Xue Y G, Wang Z Q, Liu L J, Yang J C. Changes in grain yield and morphological and physiological characteristics during 60-year evolution of japonica rice cultivars in Jiangsu province, China. Acta Agron Sin, 2010, 36: 133-140. (in Chinese with English abstract)
[30] 张耗, 黄钻华, 王静超, 王志琴, 杨建昌. 江苏中籼水稻品种演进过程中根系形态生理性状的变化及其与产量的关系. 作物学报, 2011, 37: 1020-1030.
doi: 10.3724/SP.J.1006.2011.01020
Zhang H, Huang Z H, Wang J C, Wang Z Q, Yang J C. Changes in morphological and physiological traits of roots and their relationships with grain yield during the evolution of mid-season Indica rice cultivars in Jiangsu province. Acta Agron Sin, 2011, 37: 1020-1030. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.01020
[31] Mohapatra P K, Sahu S K. Heterogeneity of primary branch development and spikelet survival in rice panicle in relation to assimilates of primary branches. J Exp Bot, 1991, 42: 871-879.
doi: 10.1093/jxb/42.7.871
[32] 杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特性的研究. 中国农业科学, 2006, 39: 1336-1345.
Yang J C, Du Y, Wu C F, Liu L J, Wang Z Q, Zhu Q S. Growth and development characteristics of super-high-yielding mid- season japonica rice. Sci Agric Sin, 2006, 39: 1336-1345. (in Chinese with English abstract)
[33] 李晓芸, 孟天瑶, 戴其根. 中熟类型甬优籼粳杂交稻组合产量优势形成及其形态生理特征. 中国稻米, 2017, 23(1): 10-16.
Li X Y, Meng T Y, Dai Q G. Yield formation and morphological and physiological characteristics of medium-maturity type of Yongyou Japohica/Indica hybrid rice. China Rice, 2017, 23(1): 10-16. (in Chinese with English abstract)
[34] 晏娟, 尹斌, 张绍林, 沈其荣, 朱兆良. 不同施氮量对水稻氮素吸收与分配的影响. 植物营养与肥料学报, 2008, 14: 835-839.
Yan J, Yin B, Zhang S L, Shen Q R, Zhu Z L. Effect of nitrogen application rate on nitrogen uptake and distribution in rice. Plant Nutr Fert Sci, 2008, 14: 835-839 (in Chinese with English abstract).
[35] Huang M, Jiang L, Xia B. Yield gap analysis of super hybrid rice between two subtropical environments. Aust J Crop Sci, 2013, 7: 600-608.
[36] Xiong Y M, X L. Low nitrogen retention in soil and litter under conditions without plants in a subtropical pine plantation. Forests, 2015, 6: 2387-2404.
doi: 10.3390/f6072387
[37] Liu X J A, Van Groenigen K J, Dijkstra P. Increased plant uptake of native soil nitrogen following fertilizer addition-not a priming effect. Appl Soil Ecol, 2017, 114: 105-110.
doi: 10.1016/j.apsoil.2017.03.011
[38] Kuzyakov Y, Friedel J K, K Stahr. Review of mechanisms and quantification of priming effects. Soil Biol Biochem, 2000, 32: 1485-1498.
doi: 10.1016/S0038-0717(00)00084-5
[39] Huang J, He F, Cui K. Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. Field Crops Res, 2008, 105: 70-80.
doi: 10.1016/j.fcr.2007.07.006
[40] Zhao X, Xie Y X, Xiong Z Q. Nitrogen fate and environmental consequence in paddy soil under rice-wheat rotation in the Taihu lake region, China. Plant Soil, 2009, 319: 225-234.
doi: 10.1007/s11104-008-9865-0
[41] Reddy. Uptake efficiency of 15N-urea in flooded and aerobic rice fields under semi-arid conditions. Paddy Water Environ, 2015, 13: 545-556.
doi: 10.1007/s10333-014-0473-8
[42] 杨利, 张建峰, 张富林, 范先鹏, 杨俊诚, 杨永成, 熊桂云, 吴运明, 余延丰, 符家安. 长江中下游地区氮肥减施对稻麦轮作体系作物氮吸收、利用与氮素平衡的影响. 西南农业学报, 2013, 26(1): 195-202.
Yang L, Zhang J F, Zhang F L, Fan X P, Yang J C, Yang Y C, Xiong G Y, Wu Y M, Yu Y F, Fu J A. Effects of reducing N application on crop N uptake, utilization and soil N balance under rice-wheat rotation system on middle and lower reaches of Yangtze River region. Southwest China J Agric Sci, 2013, 26(1): 195-202. (in Chinese with English abstract)
[43] Zhang Q W, Yang Z L, Zhang H, Yi J. Recovery efficiency and loss of 15N-labelled urea in a rice-soil system in the upper reaches of the Yellow River basin. Agric Ecosyst Environt, 2012, 158: 118-126.
[44] Cao Y S, Yin B. Effects of integrated high-efficiency practice versus conventional practice on rice yield and N fate. Agric Ecosyst Environt, 2015, 202: 1-7.
[45] Pan S G, Huang S Q, Zhai J, Wang J P, Cao C G, Cai M L, Zhan M, Tang X R. Effects of N management on yield and N uptake of rice in central China. J Integr Agric, 2012, 11: 1993-2000.
doi: 10.1016/S2095-3119(12)60456-0
[46] 魏颖娟, 夏冰, 赵杨, 邹应斌. 15N示踪不同施氮量对超级稻产量形成及氮素吸收的影响. 核农学报, 2016, 30: 783-791.
doi: 10.11869/j.issn.100-8551.2016.04.0783
Wei Y J, Xia B, Zhao Y, Zou Y B. Effects of nitrogen application on yield formation and the nitrogen absorption and utilization of super rice based on 15N-tracing. Acta Agric Nucl Sin, 2016, 30: 783-791. (in Chinese with English abstract)
[47] Zhu Z L. Fate and management of fertilizer nitrogen in agro-ecosystems. In: Zhu Z, Wen Q, Freney J R, eds. Nitrogen in Soils of China. Springer, Dordrecht: Developments in Plant and Soil Sciences, 1997. pp 239-279. https://link.springer.com/book/10.1007/978-94-011-5636-3.
[48] Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H. Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crops Res, 2009, 113: 31-40.
doi: 10.1016/j.fcr.2009.04.004
[49] Chu G, Chen S, Xu C M, Wang D Y, Zhang X F. Agronomic and physiological performance of indica/japonica hybrid rice cultivar under low nitrogen conditions. Field Crops Res, 2019, 243: 107625.
[50] Zhu K, Zhou Q, Shen Y, Shen Y, Yan J Q, Xu Y J, Wang Z Q, Yang J C. Agronomic and physiological performance of an indica-japonica rice variety with a high yield and high nitrogen use efficiency. Crop Sci, 2020, 60: 1556-1568.
doi: 10.1002/csc2.20150
[51] Zhou Q, Ju C X, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H. Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation. J Integr Agric, 2017, 16: 1028-1043.
doi: 10.1016/S2095-3119(16)61506-X
[52] Cassman K G, Peng S, Olk D C, Ladha J K, Reichardt W, Dobermann A, Singh U. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice system. Field Crops Res, 1998, 56: 7-39.
doi: 10.1016/S0378-4290(97)00140-8
[53] Zhou Z C, Gan Z T, Shangguan Z P, Zhang F P. Effects of long-term repeated mineral and organic fertilizer applications on soil organic carbon and total nitrogen in a semi-arid cropland. Eur J Agron, 2013, 45: 20-26.
doi: 10.1016/j.eja.2012.11.002
[54] Pandey A, Mai V T, Vu D Q, Bui T P, Mai T L, Jensen L S, Neergaard A. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam. Agric Ecosyst Environ, 2014, 196: 137-146.
doi: 10.1016/j.agee.2014.06.010
[1] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[2] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[3] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[4] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[5] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[6] ZHANG Jun, ZHOU Dong-Dong, XU Ke, LI Bi-Zhong, LIU Zhong-Hong, ZHOU Nian-Bing, FANG Shu-Liang, ZHANG Yong-Jin, TANG Jie, AN Li-Zheng. Nitrogen fertilizer reduction and precise application model on mechanical transplanting japonica rice with good taste quality under straw returning in Huaibei Area [J]. Acta Agronomica Sinica, 2022, 48(2): 410-422.
[7] XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477.
[8] RUAN Jun-Mei, ZHANG Jun, LIU You-Hong, DONG Wen-Jun, MENG Ying, DENG Ai-Xing, YANG Wan-Shen, SONG Zhen-Wei, ZHANG Wei-Jian. Effects of free air temperature increase on nitrogen utilization of rice in northeastern China [J]. Acta Agronomica Sinica, 2022, 48(1): 193-202.
[9] YANG Zhi-Yuan, SHU Chuan-Hai, ZHANG Rong-Ping, YANG Guo-Tao, WANG Ming-Tian, QIN Jian, SUN Yong-Jian, MA Jun, LI Na. Comparison of tolerances to nitrogen fertilizer between compact and loose hybrid indica rice varieties [J]. Acta Agronomica Sinica, 2021, 47(8): 1593-1602.
[10] KE Jian, CHEN Ting-Ting, XU Hao-Cong, ZHU Tie-Zhong, WU Han, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Effects of different application methods of controlled-release nitrogen fertilizer on grain yield and nitrogen utilization of indica-japonica hybrid rice in pot-seedling mechanically transplanted [J]. Acta Agronomica Sinica, 2021, 47(7): 1372-1382.
[11] LIU Qiu-Yuan, ZHOU Lei, TIAN Jin-Yu, CHENG Shuang, TAO Yu, XING Zhi-Peng, LIU Guo-Dong, WEI Hai-Yan, ZHANG Hong-Cheng. Relationships among grain yield, rice quality and nitrogen uptake of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(5): 904-914.
[12] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[13] ZHU Ya-Li, WANG Chen-Guang, YANG Mei, ZHENG Xue-Hui, ZHAO Cheng-Feng, ZHANG Ren-He. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density [J]. Acta Agronomica Sinica, 2021, 47(3): 507-519.
[14] HU Xin-Hui, GU Shu-Bo, ZHU Jun-Ke, WANG Dong. Effects of applying potassium at different growth stages on dry matter accumulation and yield of winter wheat in different soil-texture fields [J]. Acta Agronomica Sinica, 2021, 47(11): 2258-2267.
[15] SHI Xiao-Juan, HAN Huan-Yong, WANG Fang-Yong, HAO Xian-Zhe, GAO Hong-Yun, LUO Hong-Hai. Effects of chemical topping with fortified mepiquat chloride on photosynthetic characteristics of cotton leaves under different nitrogen rates [J]. Acta Agronomica Sinica, 2020, 46(9): 1416-1429.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!