Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (12): 2994-3003.doi: 10.3724/SP.J.1006.2022.13076

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction of SSR-DNA fingerprints and genetic diversity analysis of 290 maize varieties approved in Jilin province, China

TIAN Hong-Li1(), ZHAO Zi-Wei1,2(), YANG Yang1(), FAN Ya-Ming1, BAN Xiu-Li3, YI Hong-Mei1, YANG Hong-Ming3, LIU Shao-Rong1, GAO Yu-Qian3, LIU Ya-Wei1, WANG Feng-Ge1()   

  1. 1Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences / Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
    2Jilin Agricultural University, Changchun 130118, Jilin, China
    3Jilin Seed Management Station, Changchun 130022, Jilin, China
  • Received:2021-12-21 Accepted:2022-03-25 Online:2022-12-12 Published:2022-04-20
  • Contact: WANG Feng-Ge E-mail:tianhongli9963@163.com;zhao691111@sina.com;caurwx@163.com;gege0106@163.com
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    Science and Technology Innovation Capacity Building Project of Beijing Academy of Agriculture and Forestry Sciences(KJCX20200305);National Key Research and Development Program of China during 13th Five-Year Plan(2017YFD0102001)

Abstract:

The standard fingerprint construction and genetic diversity analysis of maize varieties approved in Jilin province can provide data support for variety approval, protection, and market monitoring. It is also of great significance for variety breeding and germplasm innovation. In this study, 40 pairs of SSR markers were used to construct the standard SSR-DNA fingerprints of 290 maize varieties approved in Jilin province from 2010 to 2017, and the genetic diversity was analyzed. The results showed that the average number of alleles detected by 40 SSRs was 11.85 and the average PIC was 0.64. The average frequency of heterozygous genotypes of varieties was 0.66. The different loci number among varieties was ≥ 2. The genetic diversity analysis of six maturity groups revealed that there were more varieties with middle and late maturity, accounting for 71.72%, and fewer varieties with extremely early maturity, early maturity, and late maturity. The early maturity group had the highest gene diversity parameter of 0.69, and the mid-late maturity group with the largest number of varieties had a relatively low gene diversity value. Clustering results indicated that the varieties approved and popularized in Jilin province were divided into three categories: sweet waxy and popcorn, extremely early and early middle, medium or late maturity. The middle or late maturing varieties had two major trends, representing the differences in the selection of heterozygous groups, the different breeding units, the differences in variety types and so on. This study provides an important theoretical and data basis for maize variety management, variety breeding, and germplasm innovation in Jilin province.

Key words: Jilin province, approved maize varieties, SSR marker, DNA fingerprints construction, genetic diversity

Table 1

Polymorphism information of 40 SSR primers"

编号
SSR ID
染色体位置
Chromosome location
基因型数
Number of
genotypes
等位基因数
Number of
alleles
多态信息含量
Polymorphism
information content
引物区分能力
Discrimination power
主要等位基因及其频率
Major allele and its
frequency
P01 1.03 46.00 18.00 0.73 0.92 350,0.44
P02 1.06 16.00 8.00 0.52 0.64 241,0.62
P03 2.04 66.00 21.00 0.81 0.92 256,0.28
P04 2.08 66.00 25.00 0.79 0.92 358,0.37
P05 3.00 69.00 23.00 0.81 0.95 291,0.36
P06 3.05 19.00 8.00 0.68 0.86 336,0.41
P07 4.01 28.00 14.00 0.38 0.53 411,0.77
P08 4.06 35.00 18.00 0.67 0.84 382,0.39
P09 5.03 56.00 19.00 0.80 0.93 319,0.32
P10 5.07 42.00 15.00 0.81 0.93 252,0.27
P11 6.00 69.00 22.00 0.84 0.95 183,0.26
P12 6.05 47.00 20.00 0.64 0.86 265,0.57
P13 7.00 33.00 14.00 0.71 0.87 208,0.45
P14 7.04 16.00 6.00 0.66 0.85 173,0.46
P15 8.06 32.00 8.00 0.71 0.89 237,0.46
P16 8.08 21.00 8.00 0.51 0.75 217,0.65
P17 9.03 9.00 4.00 0.56 0.77 413,0.48
P18 9.04 9.00 6.00 0.33 0.57 278,0.76
P19 10.02 22.00 14.00 0.49 0.73 222,0.66
P20 10.05 25.00 10.00 0.68 0.86 185,0.42
P21 1.07 7.00 4.00 0.43 0.66 154,0.67
P22 1.10 83.00 24.00 0.85 0.95 193,0.31
P23 2.00 26.00 8.00 0.68 0.84 253,0.44
P24 2.07 23.00 8.00 0.61 0.82 222,0.51
P25 2.09 35.00 13.00 0.68 0.87 165,0.47
P26 3.07 13.00 6.00 0.56 0.77 232,0.56
P27 4.04 20.00 8.00 0.64 0.83 271,0.44
P28 4.09 9.00 5.00 0.51 0.74 197,0.48
P29 5.02 40.00 12.00 0.79 0.92 276,0.28
P30 5.03 8.00 5.00 0.45 0.63 126,0.61
P31 6.01 52.00 20.00 0.75 0.91 263,0.39
P32 6.07 24.00 9.00 0.62 0.80 234,0.54
P33 7.01 24.00 9.00 0.66 0.81 207,0.39
P34 7.03 16.00 8.00 0.50 0.73 170,0.60
P35 8.02 20.00 8.00 0.69 0.88 183,0.44
P36 8.09 16.00 6.00 0.62 0.83 204,0.50
P37 9.01 27.00 8.00 0.76 0.90 197,0.29
P38 9.05 7.00 4.00 0.37 0.65 275,0.61
P39 10.00 34.00 13.00 0.64 0.83 309,0.44
P40 10.04 41.00 15.00 0.71 0.86 310,0.37
平均Mean 31.28 11.85 0.64 0.82 0.47

Fig. 1

Distribution of heterozygous genotype rate and different locus number obtained by pairwise comparative analysis in 290 maize hybrid lines A: the distribution of heterozygous genotype rate of the 290 maize hybrid lines; B: the distribution of different locus number obtained by pairwise comparative analysis in 290 maize hybrid lines."

Table 2

Comparison of genetic diversity among six maturation groups"

熟期
Mature stage
样品数量
Number
总基因型数
Number of
genotypes
总等位基因数
Number of
alleles
杂合基因型频率平均值
Heterozygous
genotype rate
基因多样性
Gene diversity
极早熟 Extremely early maturity 11 263 210 0.66 0.66
早熟 Early maturity 25 458 291 0.61 0.69
中早熟 Mid-early maturity 38 492 291 0.65 0.67
中熟 Mid-maturity 86 753 389 0.66 0.68
中晚熟 Mid-late maturity 122 717 359 0.67 0.65
晚熟 Late maturity 8 215 193 0.66 0.64

Fig. 2

Phylogenetic tree of 295 maize varieties Red: extremely early maturity (JZS); yellow: early maturity (ZS); brown: mid-early maturity (ZZS); blue: mid-maturity (ZHS); light green: mid-late maturity (ZWS); black: late maturity (WS). The black circles represent the representative varieties in Fig. 2."

Fig. 3

PCoA analysis of 295 maize varieties A: the relationship among three types varieties; B: the relationship among seven groups of late maturing groups; the black hollow circles represent the representative varieties."

[1] 刘禹含. 吉林省玉米生产现状及产量影响因素分析. 乡村科技, 2020, (13): 104-106.
Liu Y H. Analysis on the current situation of maize production and influencing factors in Jilin province. Rural Sci Technol, 2020, (13): 104-106. (in Chinese)
[2] 焦仁海, 仲义, 孙发明, 徐艳荣, 代秀云, 侯宗运, 刘兴二. 吉林省玉米育种存在的问题及对策. 河南农业科学, 2012, 41(8): 43-45.
Jiao R H, Zhong Y, Sun F M, Xu Y R, Dai X Y, Hou Z Y, Liu X E. Problems and countermeasures of maize breeding in Jilin province. J Henan Agric Sci, 2012, 41(8): 43-45. (in Chinese with English abstract)
[3] 孟令媛, 姜海英, 王锋. 吉林省玉米育种面临的问题及解决方向初探. 农业科技通讯, 2017, (4): 20-21.
Meng L Y, Jiang H Y, Wang F. The problems faced by maize breeding in Jilin province and solutions. Bull Agric Sci Technol, 2017, (4): 20-21. (in Chinese)
[4] 吴则东, 江伟, 马龙彪. 分子标记技术在农作物品种鉴定上的研究进展及未来展望. 中国农学通报, 2015, 31(33): 172-176.
Wu Z D, Jiang W, Ma L B. Research progress and future prospects of molecular marker technology applied in crop variety identification. Chin Agric Sci Bull, 2015, 31(33): 172-176. (in Chinese with English abstract)
[5] 王凤格, 赵久然, 郭景伦, 佘花娣, 陈刚. 比较三种DNA指纹分析方法在玉米品种纯度及真伪鉴定中的应用. 分子植物育种, 2003, (增刊1): 655-661.
Wang F G, Zhao J R, Guo J L, She H D, Chen G. Comparison of three DNA fingerprint analyzing methods for maize cultivars’ identification. Mol Plant Breed, 2003, (S1): 655-661. (in Chinese with English abstract)
[6] 赵久然, 王凤格, 郭景伦, 陈刚, 廖琴, 孙世贤, 陈如明, 刘龙洲. 中国玉米新品种DNA指纹库建立系列研究: II. 适于玉米自交系和杂交种指纹图谱绘制的SSR核心引物的确定. 玉米科学, 2003, 11(2): 3-5.
Zhao J R, Wang F G, Guo J L, Chen G, Liao Q, Sun S X, Chen R M, Liu L Z. Series of research on establishing DNA fingerprinting pool of Chinese new maize cultivars: II. Confirmation of a set of SSR core primer pairs. J Maize Sci, 2003, 11(2): 3-5. (in Chinese with English abstract)
[7] 王凤格, 易红梅, 赵久然, 田红丽, 任洁, 葛建镕, 王璐. 玉米真实性SSR鉴定标准的研制及应用. 玉米科学, 2016, 24(4): 61-66.
Wang F G, Yi H M, Zhao J R, Tian H L, Ren J, Ge J R, Wang L. Development and application of maize authenticity identification standard by SSR technology. J Maize Sci, 2016, 24(4): 61-66. (in Chinese with English abstract)
[8] 张金渝, 张建华, 杨晓洪, 金航, 米艳华, 肖植文, 孔令明, 肖卿. 玉米DUS测试标准品种的SSR分子指纹图谱的构建. 玉米科学, 2006, 14(4): 47-52.
Zhang J Y, Zhang J H, Yang X H, Jin H, Mi Y H, Xiao Z W, Kong L M, Xiao J. Building of SSR fingerprinting map of standard varieties on maize in DUS testing. J Maize Sci, 2006, 14(4): 47-52. (in Chinese with English abstract)
[9] 李丽华, 魏昕, 潘光堂. 20个骨干玉米自交系的SSR指纹图谱构建. 西南农业学报, 2007, 20: 1172-1175.
Li L H, Wei X, Pan G T. The construction of fingerprints for 20 basic maize inbred lines by SSR markers. Southwest China J Agric Sci, 2007, 20: 1172-1175. (in Chinese with English abstract)
[10] 韩晴, 沈雪芳, 陆卫平, 王义发, 彭日荷, 姚泉洪. 20个鲜食玉米杂交种DNA指纹库的构建. 上海农业学报, 2014, 30(1): 36-39.
Han Q, Shen X F, Lu W P, Wang Y F, Peng R H, Yao Q H. Construction of DNA fingerprint database of 20 table corn hybrids. Acta Agric Shanghai, 2014, 30(1): 36-39. (in Chinese with English abstract)
[11] 倪维晨, 李瑞霞, 陶启威, 张戟, 毕研飞, 钱春桃. 基于SSR标记的地方品种糯性小玉米自交系指纹图谱构建. 浙江农业科学, 2019, 60: 911-914.
Ni W C, Li R X, Tao Q C, Zhang J, Bi Y F, Qian C T. Construction of fingerprints of inbred lines of landrace waxy maize based on SSR markers. J Zhejiang Agric Sci, 2019, 60: 911-914. (in Chinese)
[12] 王凤格, 杨扬, 易红梅, 赵久然, 任洁, 王璐, 葛建镕, 江彬, 张宪晨, 田红丽, 侯振华. 中国玉米审定品种标准SSR指纹库的构建. 中国农业科学, 2017, 50: 1-14.
Wang F G, Yang Y, Yi H M, Zhao J R, Ren J, Wang L, Ge J R, Jiang B, Zhang X C, Tian H L, Hou Z H. Construction of an SSR-based standard fingerprint database for corn variety authorized in China. Sci Agric Sin, 2017, 50: 1-14. (in Chinese with English abstract)
[13] 易红梅, 任洁, 王璐, 王蕊, 葛建镕, 王凤格, 赵久然, 徐明良.2014-2019 年国家玉米区域试验参试组合DNA指纹检测及遗传多样性分析. 华北农学报, 2020, 35(3): 87-93.
Yi H M, Ren J, Wang L, Wang R, Ge J R, Wang F G, Zhao J R, Xu M L. DNA fingerprinting and genetic diversity analysis of national maize regional trials in 2014-2019. Acta Agric Boreali-Sin, 2020, 35(3): 87-93. (in Chinese with English abstract)
doi: 10.7668/hbnxb.20191055
[14] 赵静, 孙娟, 张仁和, 薛吉全. 基于SSR技术分析陕西省玉米主栽品种的遗传多样性. 西北农业学报, 2008, 17(3): 124-128.
Zhao J, Sun J, Zhang R H, Xue J Q. Genetic diversity of main maize cultivars in Shaanxi province analysed by SSR markers. Acta Agric Boreali-Occident Sin, 2008, 17(3): 124-128. (in Chinese with English abstract)
[15] 谭君. 四川常用玉米自交系、杂交种的SSR指纹图谱构建. 四川农业大学硕士学位论文, 四川成都, 2003.
Tan J. SSR Fingerprints of Maize Inbred-lines and Hybrids Widely Used in Sichuan. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2003. (in Chinese with English abstract)
[16] 李承宗. 河北省审定玉米杂交种和亲本SSR指纹图谱的构建. 中国农业科学院硕士学位论文,北京, 2012.
Li C Z. The Hybrids Validation Research and the Establishment of Their Parents by SSR Fingerprinting in Hebei Province. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2012. (in Chinese with English abstract)
[17] 高玉倩, 田红丽, 王凤格, 赵久然, 陈学军, 王璐, 易红梅, 原亚萍. 吉林省玉米新品种SSR标记指纹数据库的构建及其分析. 玉米科学, 2012, 20(3): 43-47.
Gao Y Q, Tian H L, Wang F G, Zhao J R, Chen X J, Wang L, Yi H M, Yuan Y P. Construction and analysis of the SSR-based fingerprinting database for new maize varieties in Jilin province. J Maize Sci, 2012, 20(3): 43-47. (in Chinese with English abstract)
[18] 王凤格, 班秀丽, 杨扬, 易红梅, 黄庭君. 吉林审定玉米品种SSR指纹图谱. 北京: 中国农业科学技术出版社, 2019. pp 1-9.
Wang F G, Ban X L, Yang Y, Yi H M, Huang T J. SSR Fingerprint of Jilin Approved Maize Varieties. Beijing: China Agricultural Science and Technology Press, 2019. pp 1-9. (in Chinese)
[19] 唐浩, 余汉勇, 张新明, 魏兴华. 水稻新品种测试的标准品种DNA指纹图谱多样性分析. 植物遗传资源学报, 2015, 16: 100-106.
Tang H, Yu H Y, Zhang X M, Wei X H. Analysis on the diversity of DNA fingerprinting of the example varieties used for the test of rice new varieties. J Plant Genet Res, 2015, 16: 100-106. (in Chinese with English abstract)
[20] 李宏博, 庞斌双, 刘丽华, 刘阳娜, 赵昌平, 陈景堂. 河北区试小麦品种(系) DNA指纹图谱构建及遗传差异分析. 生物技术通报, 2015, 31(6): 93-99.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.06.034
Li H B, Pang B S, Liu L H, Liu Y N, Zhao C P, Chen J T. Construction of DNA fingerprinting and analysis of genetic diversity for wheat varieties (lines) in regional test of Hebei. Biotechnol Bull, 2015, 31(6): 93-99. (in Chinese with English abstract)
[21] 聂新辉, 尤春源, 黄聪, 郭欢乐, 王夏青, 赵文霞, 林忠旭. 新陆早棉花品种DNA指纹图谱的构建及遗传多样性分析. 作物学报, 2014, 40: 2104-2117.
doi: 10.3724/SP.J.1006.2014.02104
Nie X H, You C Y, Huang C, Guo H L, Wang X Q, Zhao W X, Lin Z X. Construction of DNA fingerprinting and analysis of genetic diversity for Xinluzao cotton cultivars. Acta Agron Sin, 2014, 40: 2104-2117. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.02104
[22] 齐广勋, 王英男, 袁翠平, 王玉民, 刘晓冬, 李玉秋, 董英山, 赵洪锟. 基于SSR标记的不同地理生态型野生大豆遗传多样性分析. 大豆科学, 2021, 40: 334-343.
Qi G X, Wang Y N, Yuan C P, Wang Y M, Liu X D, Li Y Q, Dong Y S, Zhao H K. Genetic diversity analysis of wild soybean (Glycine soja) populations with different geographical ecotypes based on SSR markers. Soybean Sci, 2021, 40: 334-343. (in Chinese with English abstract)
[23] 陈发波, 杨克诚, 荣廷昭, 潘光堂. 西南及四川区试玉米组合遗传多样性分析. 作物学报, 2007, 33: 991-998.
Chen F B, Yang K C, Rong T Z, Pan G T. Analysis of genetic diversity of maize hybrids in the regional tests of Sichuan and southwest China. Acta Agron Sin, 2007, 33: 991-998. (in Chinese with English abstract)
[24] 王利锋, 李会勇, 唐保军, 程泽强, 王振华, 铁双贵. 利用表型和SSR标记分析河南省玉米地方品种的遗传多样性. 中国农业科学, 2009, 42: 1136-1144.
Wang L F, Li H Y, Tang B J, Cheng Z Q, Wang Z H, Tie S G. Genetic diversity analysis of Henan maize landrace by phenotype hand simple sequence repeat (SSR) markers. Sci Agric Sin, 2009, 42: 1136-1144. (in Chinese with English abstract)
[25] 王凤格, 田红丽, 赵久然, 王璐, 易红梅, 宋伟, 高玉倩, 杨国航. 中国328个玉米品种 (组合) SSR标记遗传多样性分析. 中国农业科学, 2014, 47: 856-864.
Wang F G, Tian H L, Zhao J R, Wang L, Yi H M, Song W, Gao Y Q, Yang G H. Genetic diversity analysis of 328 maize varieties (hybridized combinations) using SSR markers. Sci Agric Sin, 2014, 47: 856-864. (in Chinese with English abstract)
[26] 王凤格, 易红梅, 赵久然, 刘平, 张新明, 田红丽, 堵苑苑. 玉米品种鉴定技术规程SSR标记法. NY/T 1432-2014, 2014.
Wang F G, Yi H M, Zhao J R, Liu P, Zhang X M, Tian H L, Du Y Y. Protocol for the Identification of Maize Varieties—SSR Marker Method. NY/T 1432-2014, 2014. (in Chinese)
[27] Jiang B, Zhao Y K, Yi H M, Huo Y X, Wu H T, Ren J, Ge J R, Zhao J R, Wang F G. PIDS: a user-friendly plant DNA fingerprint database management system. Genes, 2020, 11: 373.
[28] Tessier C, David J, This P, Boursiquot J M, Charrier A. Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theor Appl Genet, 1999, 98: 171-177.
doi: 10.1007/s001220051054
[29] Liu K J, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128-2129.
pmid: 15705655
[30] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[31] Rogers J S. Measures of Genetic Similarity and Genetic Distance. State of Texas:University of Texas Publication 7213 Austin, 1972. pp 145-153.
[32] He Z L, Zhang H K, Gao S H, Lercher M J, Chen W H, Hu S N. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Res, 2016, 44 (W1): 236-241.
doi: 10.1093/nar/gkw370 pmid: 27131786
[33] 王凤格, 赵久然, 田红丽. 玉米品种DNA指纹鉴定技术100问. 北京: 中国农业科学技术出版社, 2013. p 1.
Wang F G, Zhao J R, Tian H L. 100 Questions on DNA Fingerprint Identification Technology of Maize Varieties. Beijing: China Agricultural Science and Technology Press, 2013. p 1. (in Chinese)
[34] 石淑芹, 陈佑启, 李正国, 杨鹏, 吴文斌, 汤芳. 基于空间插值分析的指标空间化及吉林省玉米种植区划研究. 地理科学, 2011, 31: 408-414.
Shi S Q, Chen Y Q, Li Z G, Yang P, Wu W B, Tang F. Research on index spatialization based on spatial interpolation analysis and maize planting regionalization in Jilin province. Sci Geograph Sin, 2011, 31: 408-414. (in Chinese with English abstract)
[35] 任景全, 刘玉汐, 王丽伟, 王亮, 王冬妮, 郭春明, 曹铁华. 吉林省地表温度时空变化及影响因素研究. 中国农学通报, 2020, 36(5): 103-109.
Ren J Q, Liu Y X, Wang L W, Wang L, Wang D N, Guo C M, Cao T H. Spatiotemporal variation of surface temperature in Jilin province and its influencing factors. Chin Agric Sci Bull, 2020, 36(5): 103-109. (in Chinese with English abstract)
[36] 廉军, 姜立雁, 李福林, 张健, 王振萍, 王平, 刘学玲. 德美亚系列玉米杂交种对早熟玉米育种的启示. 热带农业工程, 2019, 43(3): 1-3.
Lian J, Jiang L Y, Li F L, Zhang J, Wang Z P, Wang P, Liu X L. Enlightenment of demeiya series maize hybrids on early maturing maize breeding. Trop Agric Eng, 2019, 43(3): 1-3. (in Chinese with English abstract)
[37] 赵久然, 李春辉, 宋伟, 王元东, 张如养, 王继东, 王凤格, 田红丽, 王蕊. 基于SNP芯片揭示中国玉米育种种质的遗传多样性与群体遗传结构. 中国农业科学, 2018, 51: 626-644.
Zhao J R, Li C H, Song W, Wang Y D, Zhang R Y, Wang J D, Wang F G, Tian H L, Wang R. Genetic diversity and population structure of important Chinese maize breeding germplasm revealed by SNP-chips. Sci Agric Sin, 2018, 51: 626-644. (in Chinese with English abstract)
[1] YAO Zhu-Fang, ZHANG Xiong-Jian, YANG Yi-Ling, HUANG Li-Fei, CHEN Xin-Liang, YAO Xiao-Jian, LUO Zhong-Xia, CHEN Jing-Yi, WANG Zhang-Ying, FANG Bo-Ping. Genetic diversity of phenotypic traits in 177 sweetpotato landrace [J]. Acta Agronomica Sinica, 2022, 48(9): 2228-2241.
[2] WANG Rong, CHEN Xiao-Hong, WANG Qian, LIU Shao-Xiong, LU Ping, DIAO Xian-Min, LIU Min-Xuan, WANG Rui-Yun. Genetic diversity and genetic relationship of Chinese traditional foxtail millet accessions [J]. Acta Agronomica Sinica, 2022, 48(8): 1914-1925.
[3] HUAI Yuan-Yuan, ZHANG Sheng-Rui, WU Ting-Ting, AZAM Muhammad, LI Jing, SUN Shi, HAN Tian-Fu, LI Bin, SUN Jun-Ming. Potential evaluation of molecular markers related to major nutritional quality traits in soybean breeding [J]. Acta Agronomica Sinica, 2022, 48(8): 1957-1976.
[4] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[5] LI Xiao-Yu, FANG Xiao-Mei, WU Hao-Tian, WANG Ying-Qian, LIU Yang, TANG Tian, WANG Yu-Dong, WU Yin-Huan, YUE Lin-Qing, ZHANG Rui-Feng, CUI Jing-Bin, ZHANG Jian, YI Ze-Lin. Association analysis of agronomic traits of tartary buckwheat germplasm resources with SSR markers [J]. Acta Agronomica Sinica, 2022, 48(12): 3091-3107.
[6] LIU Yu-Ling, ZHANG Hong-Yan, TENG Chang-Cai, ZHOU Xian-Li, HOU Wan-Wei. Genetic diversity and its association analysis of SSR markers with starch content in faba bean (Vicia faba L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2786-2796.
[7] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[8] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[9] SUN Qian, ZOU Mei-Ling, ZHANG Chen-Ji, JIANG Si-Rong, Eder Jorge de Oliveira, ZHANG Sheng-Kui, XIA Zhi-Qiang, WANG Wen-Quan, LI You-Zhi. Genetic diversity and population structure analysis by SNP and InDel markers of cassava in Brazil [J]. Acta Agronomica Sinica, 2021, 47(1): 42-49.
[10] Meng-Liang ZHAO,Li-Hui WANG,Yan-Jing REN,Xue-Mei SUN,Zhi-Qiang HOU,Shi-Peng YANG,Li LI,Qi-Wen ZHONG. Genetic diversity of phenotypic traits in 257 Jerusalem artichoke accessions [J]. Acta Agronomica Sinica, 2020, 46(5): 712-724.
[11] Hong-Yan ZHANG,Tao YANG,Rong LIU,Fang JIN,Li-Ke ZHANG,Hai-Tian YU,Jin-Guo HU,Feng YANG,Dong WANG,Yu-Hua HE,Xu-Xiao ZONG. Assessment of genetic diversity by using EST-SSR markers in Lupinus [J]. Acta Agronomica Sinica, 2020, 46(3): 330-340.
[12] MA Yan-Ming, FENG Zhi-Yu, WANG Wei, ZHANG Sheng-Jun, GUO Ying, NI Zhong-Fu, LIU Jie. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits [J]. Acta Agronomica Sinica, 2020, 46(12): 1997-2007.
[13] MA Yan-Ming, LOU Hong-Yao, CHEN Zhao-Yan, XIAO Jing, XU Lin, NI Zhong-Fu, LIU Jie. Genetic diversity assessment of winter wheat landraces and cultivars in Xinjiang via SNP array analysis [J]. Acta Agronomica Sinica, 2020, 46(10): 1539-1556.
[14] LIU Yi-Ke,ZHU Zhan-Wang,CHEN Ling,ZOU Juan,TONG Han-Wen,ZHU Guang,HE Wei-Jie,ZHANG Yu-Qing,GAO Chun-Bao. Revealing the genetic diversity of wheat varieties (lines) in China based on SNP markers [J]. Acta Agronomica Sinica, 2020, 46(02): 307-314.
[15] YE Wei-Jun,CHEN Sheng-Nan,YANG Yong,ZHANG Li-Ya,TIAN Dong-Feng,ZHANG Lei,ZHOU Bin. Development of SSR markers and genetic diversity analysis in mung bean [J]. Acta Agronomica Sinica, 2019, 45(8): 1176-1188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .