Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (5): 1292-1304.doi: 10.3724/SP.J.1006.2023.23046

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize

LI Hui1,2(), WANG Xu-Min1,2, LIU Miao1,2, LIU Peng-Zhao1,2, LI Qiao-Li1,2, WANG Xiao-Li1,2, WANG Rui1,2, LI Jun1,2,*()   

  1. 1College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
    2Key Laboratory of Crop Physio-ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
  • Received:2022-06-01 Accepted:2022-09-05 Online:2023-05-12 Published:2022-09-17
  • Contact: *E-mail: junli@nwsuaf.edu.cn
  • Supported by:
    National Science and Technology Support Program of China(2015BAD22B02);National Natural Science Foundation of China(31801300)

Abstract:

The objective of this study is to solve the problems of excessive water and nitrogen input in current summer maize cropping system and lacking comprehensive evaluation approach and evaluate the current water and nitrogen management scheme for yield, nitrogen utilization of summer maize and soil nitrate nitrogen content. AHP, entropy method, and game theory were combined to determine index weight, TOPSIS was used to evaluate water and nitrogen reduction scheme, thus the results can provide a theoretical basis for water-saving, nitrogen-reducing and high efficient cultivation scheme of summer maize in Guanzhong plain. The two-factor split-plot field experiment during 2018-2020 was conducted in Yangling, Shaanxi province, where three irrigation levels were traditional 800 m3 hm-2 (W2) as the control, reduced to 400 m3 hm-2 (W1), and no irrigation (W0). Each water treatment was the five N rate treatments [300 kg hm-2 (N300) as the control, reduced 25% (225 kg hm-2), reduced 50% (150 kg hm-2), reduced 75% (75 kg hm-2), and no N fertilizer (0)]. Maize yield, nitrogen use efficiency, and soil nitrate nitrogen content under different water and nitrogen reduction treatments were analyzed and to choose optimal scheme with modeling by TOPSIS. Compared with W2N300 (CK), W1N225 had best effect on yield, and increased significantly by 5.4%. Meanwhile, W2N225, W2N150, and W1N150 had significantly effect on yield, and increased significantly by 2.4%, 0.7%, and 0.3%, respectively. W1N225 and W1N150 enhanced the N-use efficiency, agronomic efficiency, and partial factor productivity, and increased significantly by 29.7%, 16.2%, 24.5%; 36.5%, 25.4%, 28.8%; 53.4%, 36.7%, 32.8%; 46.5%, 35.2%, 47.4%; 43.6%, 37.3%, 48.0%; and 66.9%, 43.1%, 54.5% than CK in 2018, 2019, 2020, respectively. W1N225, W1N150 reduced soil nitrate nitrogen leaching, and decreased by 28.6% and 53.8% than CK, respectively. Using TOPSIS for comprehensive evaluation, it was found that the evaluation value of each index was the highest when nitrogen fertilizer was reduced by 25%-50% (with nitrogen application rate of 150-225 kg hm-2) and irrigation water was reduced by 50% (irrigated 400 m3 hm-2 in jointing stage). Water and nitrogen reduction (medium fertilizer in middle water) were better than high water and high fertilizer, high water and high fertilizer were better than low water and low fertilizer, and high water and low fertilizer were better than low water and high fertilizer. Through TOPSIS optimization, the comprehensive evaluation value was the best when the irrigation amount was W1 (irrigated 400 m3 hm-2 at jointing stage) and the nitrogen application amount was 200 kg hm-2. Therefore, reduced irrigation (irrigated 400 m3 hm-2 in jointing stage) and reduced 33.3% nitrogen (with nitrogen application rate of 200 kg hm-2) mode can be used to realize the water-saving and nitrogen reduction production of summer maize in Guanzhong Plain.

Key words: summer maize, irrigation and nitrogen fertilizer reduction, nitrogen use efficiency, yield, technique for order preference by similarity to an ideal solution

Table 1

Basic physicochemical properties of the experiment soil (0-60 cm)"

土层
Depth
(cm)
有机质
SOM
(g kg-1)
全氮
Total N
(g kg-1)
硝态氮
Nitrate N
(mg kg-1)
全磷
Total P
(g kg-1)
速效磷
Available P
(mg kg-1)
全钾
Total K
(g kg-1)
速效钾
Available K
(mg kg-1)
容重
Soil bulk density (g cm-3)
0-20 19.06 1.24 12.46 0.99 27.59 10.85 243.87 1.20
20-40 15.03 1.00 14.53 0.86 15.06 10.59 222.31 1.38
40-60 10.95 0.79 23.08 0.62 3.54 9.90 193.96 1.49

Fig. 1

Monthly rainfall during the growth period of summer maize"

Table 2

Maize yield under different water and nitrogen reduction treatments"

处理
Treatment
产量Yield (kg hm-2) 平均
Mean
增产率
Increase rate (%)
2018 2019 2020
W2N300 9802.0 b 9925.9 b 9435.7 c 9722.4 c
W2N225 10,016.0 a 9982.2 b 9867.4 b 9955.2 b 2.4 b
W2N150 9707.4 b 9664.0 c 10,014.0 b 9795.2 bc 0.7 c
W2N75 8612.3 d 9259.0 d 8955.8 e 8942.4 d -8.0 e
W2N0 7322.7 f 6891.2 i 7823.2 h 7345.5 g -24.4 i
W1N300 9619.5 b 10,508.0 a 10,347.7 a 10,158.4 a 4.5 a
W1N225 9729.4 b 10,451.2 a 10,543.9 a 10,244.8 a 5.4 a
W1N150 9358.6 c 9556.1 c 10,377.4 a 9753.0 c 0.3 d
W1N75 8652.3 d 8705.2 e 9254.1 d 8870.5 d -8.8 f
W1N0 7065.4 g 6865.3 i 7927.0 h 7285.9 g -25.1 j
W0N300 8257.1 e 8444.3 g 8761.1 f 8487.5 e -12.7 g
W0N225 8107.3 e 8675.6 ef 8966.3 e 8583.4 e -11.7 g
W0N150 8045.1 e 8481.5 fg 9112.5 de 8546.4 e -12.1 g
W0N75 7422.3 f 7871.1 h 8148.7 g 7814.0 f -19.6 h
W0N0 6160.6 h 5251.9 j 6932.6 i 6114.7 h -37.1 k
方差分析ANOVA
W *** *** ** *** ***
N *** * *** *** ***
W×N ** NS * *** ***

Table 3

Aboveground nitrogen uptake and nitrogen use efficiency of summer maize under different water and nitrogen reduction treatments"

处理
Treatment
2018 2019 2020
N uptake
(kg hm-2)
NAE
(kg kg-1)
NRE
(%)
NPFP
(kg kg-1)
N uptake
(kg hm-2)
NAE
(kg kg-1)
NRE
(%)
NPFP
(kg kg-1)
N uptake
(kg hm-2)
NAE
(kg kg-1)
NRE
(%)
NPFP
(kg kg-1)
W2N300 227.5 a 8.3 e 30.6 f 32.7 g 213.7 a 10.1 f 24.9 f 33.1 h 191.6 a 5.4 f 24.8 f 31.5 hi
W2N225 221.8 a 12.0 d 38.2 de 44.5 e 213.0 a 13.7 de 32.9 e 44.4 f 193.0 a 9.1 d 33.7 e 43.9 g
W2N150 201.9 b 15.9 b 44.0 c 64.7 c 213.2 a 18.5 bc 49.5 b 64.4 d 172.2 b 14.6 b 36.7 de 66.8 d
W2N75 169.3 e 17.2 b 44.6 c 114.8 a 168.7 e 18.2 bc 45.0 c 123.5 a 155.2 c 15.1 b 50.9 b 119.4 b
W2N0 135.8 i 139.0 i 117.0 f
W1N300 202.9 b 8.5 e 28.6 f 32.1 g 190.6 b 12.1 ef 24.3 f 35.0 h 191.6 a 8.1 de 26.3 f 34.5 h
W1N225 199.3 b 11.8 d 36.5 e 43.3 e 192.7 b 15.9 cd 33.4 e 46.5 f 196.6 a 11.6 c 39.2 d 46.9 f
W1N150 188.1 c 15.5 bc 47.2 c 62.2 c 177.2 c 17.9 bc 39.7 d 63.7 d 173.9 b 16.3 ab 43.6 c 69.2 d
W1N75 183.8 d 21.2 a 88.8 a 115.4 a 154.4 h 24.5 a 49.0 b 116.1 b 150.4 cd 17.7 a 56.0 a 123.4 a
W1N0 117.2 j 117.7 j 108.4 fg
W0N300 158.8 g 7.0 e 19.0 g 27.5 h 177.1 c 9.6 f 24.2 f 28.2 i 143.7 d 6.1 ef 13.8 g 29.2 i
W0N225 182.6 d 8.7 e 35.9 e 36.0 f 172.5 d 13.9 de 30.2 e 38.6 g 154.9 c 9.0 d 23.3 f 39.9 g
W0N150 162.0 f 12.6 cd 40.1 d 53.6 d 164.5 f 19.5 b 40.0 d 56.5 e 141.5 d 14.5 b 26.1 f 60.8 e
W0N75 150.6 h 16.8 b 65.0 b 99.0 b 160.3 g 22.9 a 74.4 a 105.0 c 129.7 e 16.2 ab 36.4 de 108.6 c
W0N0 101.8 k 104.5 k 102.4 g
W *** ** *** *** *** * *** *** *** ** *** **
N *** *** *** *** *** *** *** *** *** *** *** ***
W×N ** NS *** *** *** NS *** *** *** NS NS NS

Fig. 2

Soil nitrate nitrogen content in 0-200 cm and 0-300 cm profile after maize harvest in 2018-2020 N300: nitrogen application rate was 300 kg hm-2; N225: nitrogen application rate was 225 kg hm-2; N150: nitrogen application rate was 150 kg hm-2; N75: nitrogen application rate was 75 kg hm-2; 0: no nitrogen application; W2: irrigated 800 m3 hm-2 in jointing and tasseling stage; W1: irrigated 400 m3 hm-2 at jointing stage; W0: no irrigation. *, **, and *** indicate significant difference at the 0.05, 0.01, and 0.001 probability levels, respectively."

Fig. 3

Residual nitrogen in 0-200 cm under different water and nitrogen reduction treatments N300: nitrogen application rate was 300 kg hm-2; N225: nitrogen application rate was 225 kg hm-2; N150: nitrogen application rate was 150 kg hm-2; N75: nitrogen application rate was 75 kg hm-2; 0: no nitrogen application; W2: irrigated 800 m3 hm-2 at jointing and tasseling stages; W1: irrigated 400 m3 hm-2 at jointing stage; W0: no irrigation. Values followed by different lowercase letters within a column indicate significant difference among treatments in the same year at P < 0.05."

Fig. 4

Residual nitrogen in 0-300 cm under different water and nitrogen reduction treatments N300: nitrogen application rate was 300 kg hm-2; N225: nitrogen application rate was 225 kg hm-2; N150: nitrogen application rate was 150 kg hm-2; N75: nitrogen application rate was 75 kg hm-2; 0: no nitrogen application; W2: irrigated 800 m3 hm-2 at jointing and tasseling stages; W1: irrigated 400 m3 hm-2 at jointing stage; W0: no irrigation. Values followed by different lowercase letters within a column indicate significant difference among treatments in the same year at P < 0.05."

Table 4

Regression analysis model between summer maize yield, nitrogen use efficiency, residual nitrate in 0-200 cm soil layer and nitrogen application rate"

灌水
Irrigation
项目
Item
回归方程
Regression equation
决定系数
Coefficient of determination
W2 Y y = 7351.3+21.5x-0.045x2 0.928***
NR y = 97.5+1.7x+0.0039x2 0.874***
NAE y = 21.0-0.042x 0.736***
NRE y = 55.2-0.092x 0.790***
NPFP y = 135.7-0.38x 0.880***
W1 Y y = 7579.7+24.1x-0.055x2 0.823***
NR y = 135.5+1.5x+0.0036x2 0.887***
NAE y = 24.6-0.051x 0.800***
NRE y = 73.2-0.16x 0.638**
NPFP y = 133.9-0.36x 0.871***
W0 Y y = 6194.0+23.7x-0.054x2 0.783***
NR y = 70.6+1.5x+0.0038x2 0.989***
NAE y = 22.6-0.051x 0.709***
NRE y = 66.8-0.17x 0.617**
NPFP y = 118.5-0.33x 0.873***

Fig. 5

Correlation analysis between the degree of fit and different indexes Di: the degree of fit; B11: maize; B21: aboveground nitrogen uptake of summer maize; B22: nitrogen agronomic efficiency; B23: nitrogen recovery efficiency; B24: N partial factor productivity; B31: residual nitrogen. *, **, and *** indicates significant difference at the 0.05, 0.01, and 0.001 probability levels, respectively."

Table 5

Degree of fit and ranking under different water and nitrogen treatments determined by TOPSIS method"

处理
Treatment
2018 2019 2020
D+ D- Di 排序
Rank
D+ D- Di 排序
Rank
D+ D- Di 排序
Rank
W2N300 0.217 0.348 0.616 d 7 0.213 0.509 0.705 e 7 0.252 0.259 0.507 f 10
W2N225 0.164 0.374 0.695 bc 4 0.193 0.516 0.728 de 6 0.207 0.308 0.598 d 7
W2N150 0.132 0.343 0.722 b 2 0.125 0.498 0.800 ab 2 0.173 0.374 0.683 c 5
W2N75 0.153 0.317 0.674 c 5 0.143 0.471 0.767 c 4 0.155 0.334 0.683 c 4
W2N0 0.333 0.185 0.357 g 13 0.408 0.252 0.381 i 14 0.344 0.214 0.384 h 12
W1N300 0.228 0.326 0.588 d 8 0.186 0.571 0.754 cd 5 0.135 0.347 0.720 b 3
W1N225 0.111 0.369 0.769 a 1 0.133 0.570 0.811 a 1 0.129 0.346 0.728 b 2
W1N150 0.132 0.335 0.718 b 3 0.138 0.484 0.778 bc 3 0.102 0.387 0.792 a 1
W1N75 0.167 0.345 0.673 c 6 0.202 0.414 0.672 f 8 0.223 0.340 0.604 d 6
W1N0 0.354 0.176 0.332 g 14 0.412 0.254 0.382 i 13 0.339 0.203 0.374 h 13
W0N300 0.253 0.212 0.456 f 12 0.293 0.349 0.544 h 11 0.309 0.184 0.374 h 14
W0N225 0.235 0.221 0.485 ef 11 0.247 0.379 0.605 g 9 0.265 0.216 0.449 g 11
W0N150 0.223 0.231 0.508 e 9 0.243 0.370 0.604 g 10 0.215 0.253 0.541 e 8
W0N75 0.247 0.244 0.497 e 10 0.292 0.331 0.531 h 12 0.242 0.259 0.517 ef 9
W0N0 0.419 0.168 0.286 h 15 0.581 0.188 0.245 j 15 0.411 0.191 0.317 i 15

Fig. 6

Relationships between the degree of fit and nitrogen application rate under different irrigation conditions W2: irrigated 800 m3 hm-2 at jointing and tasseling stages; W1: irrigated 400 m3 hm-2 at jointing stage; W0: no irrigation."

[1] 尚文彬, 张忠学, 郑恩楠, 刘明. 水氮耦合对膜下滴灌玉米产量和水氮利用的影响. 灌溉排水学报, 2019, 38(1): 49-55.
Shang W B, Zhang Z X, Zheng E N, Liu M. Nitrogen-water coupling affects nitrogen utilization and yield of film-mulched maize under drip irrigation. J Irrig Drain, 2019, 38(1): 49-55. (in Chinese with English abstract)
[2] 蔡祖聪, 颜晓元, 朱兆良. 立足于解决高投入条件下的氮污染问题. 植物营养与肥料学报, 2014, 20: 1-6.
Cai Z C, Yan X Y, Zhu Z L. Solving the problem of nitrogen pollution under high input conditions. J Plant Nutr Fert, 2014, 20: 1-6. (in Chinese with English abstract)
[3] 王大鹏, 郑亮, 吴小平, 罗雪华, 王文斌, 张永发, 薛欣欣. 旱地土壤硝态氮的产生、淋洗迁移及调控措施. 中国生态农业学报, 2017, 25: 1731-1741.
Wang D P, Zheng L, Wu X P, Luo X H, Wang W B, Zhang Y F, Xue X X. Review of soil nitrate formation, leaching transport and their control measures in upland farming systems. Chin J Eco-Agric, 2017, 25: 1731-1741 (in Chinese with English abstract).
[4] 唐文雪, 马忠明, 王景才. 施氮量对旱地全膜双垄沟播玉米田土壤硝态氮、产量和氮肥利用率的影响. 干旱地区农业研究, 2015, 33(6): 58-63.
Tang W X, Ma Z M, Wang J C. Effects of nitrogen rate on soil nitrate-N, yield and nitrogen use efficiency of double-ridge furrow sowing with full plastic film mulching for maize in dryland. Agric Res Arid Areas, 2015, 33(6): 58-63. (in Chinese with English abstract)
[5] 朱兆良. 农田中氮肥的损失与对策. 土壤与环境, 2000, (1): 1-6.
Zhu Z L. Loss of fertilizer N from plant-soil system and the strategies and techniques for its reduction. Ecol Environ Sci, 2000, (1): 1-6. (in Chinese with English abstract)
[6] 张勇. 从陕西水资源状况看节水灌溉. 干旱地区农业研究, 2002, 20(3): 60-62.
Zhang Y. Water resources and water-saving irrigation in Shaanxi province. Agric Res Arid Areas, 2002, 20(3): 60-62. (in Chinese with English abstract)
[7] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响. 作物学报, 2020, 46: 924-936.
doi: 10.3724/SP.J.1006.2020.91060
Luo W H, Shi Z J, Wang X M, Li J, Wang R. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat. Acta Agron Sin, 2020, 46: 924-936. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.91060
[8] 屈佳伟, 高聚林, 于晓芳, 王志刚, 胡树平, 孙继颖, 苏治军, 谢岷, 青格尔. 不同氮效率玉米品种对土壤硝态氮时空分布及农田氮素平衡的影响. 作物学报, 2018, 44: 737-749.
doi: 10.3724/SP.J.1006.2018.00737
Qu J W, Gao J L, Yu X F, Wang Z G, Hu S P, Sun J Y, Su Z J, Xie M, Qing G E. Effects of maize varieties with different nitrogen efficiencies on temporal and spatial distribution of soil nitrate and field nitrogen balance. Acta Agron Sin, 2018, 44: 737-749. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00737
[9] 刘慧颖, 牛世伟, 董环. 综合指数法定量评价玉米氮肥施用综合效应. 中国土壤与肥料, 2016, (6): 106-110.
Liu H Y, Niu S W, Dong H. Quantitative assessment on effects of N application on maize with integrated evaluation index. Soil Fert Sci China, 2016, (6): 106-110 (in Chinese with English abstract).
[10] Gu L M, Liu T N, Zhao J, Dong S T, Liu P, Zhang J W, Zhao B. Nitrate leaching of winter wheat grown in lysimeters as affected by fertilizers and irrigation on the North China Plain. J Integr Agric, 2015, 14: 374-388.
doi: 10.1016/S2095-3119(14)60747-4
[11] 任中生, 屈忠义, 李哲, 刘安琪. 水氮互作对河套灌区膜下滴灌玉米产量与水氮利用的影响. 水土保持学报, 2016, 30(5): 149-155.
Ren Z S, Qu Z Y, Li Z, Liu A Q. Interactive effects of nitrogen fertilization and irrigation on grain yield, water use efficiency and nitrogen use efficiency of mulched drip-irrigated maize in Hetao Irrigation District, China. J Soil Water Conser, 2016, 30(5): 149-155. (in Chinese with English abstract)
[12] 潘晓莹, 武继承. 水肥耦合效应研究的现状与前景. 河南农业科学, 2011, 40(10): 20-23.
Pan X Y, Wu J C. Current situation and prospects of water and fertilizer coupling effects. J Henan Agric Sci, 2011, 40(10): 20-23. (in Chinese with English abstract)
[13] 刘凡, 刘斌祥, 刘佳媛, 杜霞, 孔凡磊, 袁继超. 水氮互作对川中丘陵区玉米水肥利用效率和产量形成的影响. 干旱地区农业研究, 2021, 39(6): 200-206.
Liu F, Liu B X, Liu J Y, Du X, Kong F L, Yuan J C. Effect of water and nitrogen interaction on maize utilization efficiency of fertilizer, water and yield formation in the Middle Hilly Area of Sichuan province. Agric Res Arid Areas, 2021, 39(6): 200-206. (in Chinese with English abstract)
[14] 王旭敏, 雒文鹤, 刘朋召, 张琦, 王瑞, 李军. 节水减氮对夏玉米干物质和氮素积累转运及产量的调控效应. 中国农业科学, 2021, 54: 3183-3197.
doi: 10.3864/j.issn.0578-1752.2021.15.004
Wang X M, Luo W H, Liu P Z, Zhang Q, Wang R, Li J. Regulation effects of water saving and nitrogen reduction on dry matter and nitrogen accumulation, transportation and yield of summer maize. Sci Agric Sin, 2021, 54: 3183-3197. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.15.004
[15] 尹彩侠, 李前, 孔丽丽, 秦裕波, 王蒙, 于雷, 刘春光, 王立春, 侯云鹏. 控释氮肥减施对春玉米产量、氮素吸收及转运的影响. 中国农业科学, 2018, 51: 3941-3950.
doi: 10.3864/j.issn.0578-1752.2018.20.012
Yin C X, Li Q, Kong L L, Qin Y B, Wang N, Yu L, Liu C G, Wang L C, Hou Y P. Effect of reduced controlled-release nitrogen fertilizer application on yield, nitrogen absorption and transportation of spring maize. Sci Agric Sin, 2018, 51: 3941-3950. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2018.20.012
[16] 樊军, 郝明德, 党廷辉. 旱地长期定位施肥对土壤剖面硝态氮分布与累积的影响. 土壤与环境, 2000, 9(1): 23-26.
Fan J, Hao M D, Dang T H. Distribution and accumulation of NO3--N in soil profile of long-term located fertilizer experiment. Ecol Environ Sci, 2000, 9(1): 23-26 (in Chinese with English abstract).
[17] 刘朋召, 王旭敏, 宁芳, 雒文鹤, 张琦, 张元红, 李军. 减量施氮对渭北旱地春玉米产量、氮素利用及土壤硝态氮含量的影响. 应用生态学报, 2020, 31: 2621-2629.
doi: 10.13287/j.1001-9332.202008.025
Liu P Z, Wang X M, Ning F, Luo W H, Zhang Q, Zhang Y H, Li J. Effects of reduced nitrogen application on yield, nitrogen utilization of spring maize and soil nitrate content in Weibei dryland northwest China. Chin J Appl Ecol, 2020, 31: 2621-2629. (in Chinese with English abstract)
[18] 吴得峰, 姜继韶, 孙棋棋, 王蕊, 李如剑, 王志齐, 刘洪星, 崔全红, 郭胜利, 党廷辉, 巨晓棠. 减量施氮对雨养区春玉米产量和环境效应的影响. 农业环境科学学报, 2016, 35: 1202-1209.
Wu D F, Jiang J S, Sun Q Q, Wang R, Li R J, Wang Z Q, Liu H X, Cui Q H, Guo S L, Dang T H, Ju X T. Effect of reduced nitrogen fertilization on spring maize production and environmental impacts in rainfed areas. J Agro-Environ Sci, 2016, 35: 1202-1209. (in Chinese with English abstract)
[19] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响. 作物学报, 2022, 48: 180-192.
doi: 10.3724/SP.J.1006.2022.03071
Zhang Q, Han B S, Zhang B, Sheng K, Li L T, Wang Y L. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement. Acta Agron Sin, 20 22, 48: 180-192. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.03071
[20] 冯小杰, 战秀梅, 王颖, 赵蔚, 王雪鑫, 李俊, 何天池, 陈坤, 彭靖, 韩晓日. 稳定性氮肥减施对春玉米氮素吸收及土壤无机氮供应的影响. 植物营养与肥料学报, 2020, 26: 1216-1225.
Feng X J, Zhan X M, Wang Y, Zhao W, Wang X X, Li J, He T C, Chen K, Peng J, Han X R. Effects of stabilized nitrogen fertilizer reduction on nitrogen uptake of spring maize and inorganic nitrogen supply in soils. J Plant Nutr Fert, 2020, 26: 1216-1225. (in Chinese with English abstract)
[21] 郑利芳, 吴三鼎, 党廷辉. 不同施肥模式对春玉米产量、水分利用效率及硝态氮残留的影响. 水土保持学报, 2019, 33(4): 221-227.
Zheng L F, Wu S D, Dang T H. Effects of different fertilization models on spring maize yield, water use efficiency and nitrate nitrogen residue. J Soil Water Conser, 2019, 33(4): 221-227. (in Chinese with English abstract)
[22] 董强, 吴得峰, 党廷辉, 郭胜利. 黄土高原南部不同减氮模式对春玉米产量及土壤硝态氮残留的影响. 植物营养与肥料学报, 2017, 23: 856-863.
Dong Q, Wu D F, Dang T H, Guo S L. Effects of different nitrogen reduction modes on yield of spring maize and nitrate-N residue in soils of the southern Loess Plateau. J Plant Nutr Fert, 2017, 23: 856-863. (in Chinese with English abstract)
[23] Albayrak E, Erensal Y C. Using analytic hierarchy process (AHP) to improve human performance: An application of multiple criteria decision making problem. J Intell Manuf, 2004, 15: 491-503.
doi: 10.1023/B:JIMS.0000034112.00652.4c
[24] Zou Z H, Yun Y, Sun J N. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. J Environ Sci, 2006, 18: 1020-1023.
doi: 10.1016/S1001-0742(06)60032-6
[25] 赵奎, 刘维发, 曾鹏, 张亮. 基于博弈论组合赋权 TOPSIS法的深部进路参数优选. 有色金属科学与工程, 2018, 9(2): 70-74.
Zhao K, Liu W F, Zeng P, Zhang L. Optimization of structural parameters of deep stope based on combination weighting game theory. Nonfer Metals Sci Eng, 2018, 9(2): 70-74. (in Chinese with English abstract)
[26] Wang F, Kang S Z, Du T S, Li F S, Qiu R J. Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agric Water Manag, 2011, 98: 1228-1238.
doi: 10.1016/j.agwat.2011.03.004
[27] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. pp 257-270.
Bao S D. Soil and Agro-Chemistry Analysis. Beijing: China Agriculture Press, 2000. pp 257-270. (in Chinese)
[28] 戴健, 王朝辉, 李强, 李孟华, 李富翠. 氮肥用量对旱地冬小麦产量及夏闲期土壤硝态氮变化的影响. 土壤学报, 2013, 50: 956-965.
Dai J, Wang Z H, Li Q, Li M H, Li F C. Effects of nitrogen application rate on winter wheat yield and soil nitrate nitrogen during summer fallow season on dryland. Acta Pedol Sin, 2013, 50: 956-965. (in Chinese with English abstract)
[29] 郭丙玉, 高慧, 唐诚, 刘涛, 褚贵新. 水肥互作对滴灌玉米氮素吸收、水氮利用效率及产量的影响. 应用生态学报, 2015, 26: 3679-3686.
Guo B Y, Gao H, Tang C, Liu T, Chu G X. Response of water coupling with N supply on maize nitrogen uptake, water and N use efficiency, and yield in drip irrigation condition. Chin J Appl Ecol, 2015, 26: 3679-3686. (in Chinese with English abstract)
[30] 邢维芹, 王林权, 骆永明, 李立平, 李生秀. 半干旱地区玉米的水肥空间耦合效应研究. 农业工程学报, 2002, 18(6): 46-49.
Xing W Q, Wang L Q, Luo Y M, Li L P, Li S X. Effect of spacial coupling between irrigation water and fertilizer on corn in semiarid area. Trans CSAE, 2002, 18(6): 46-49. (in Chinese with English abstract)
[31] 谢英荷, 栗丽, 洪坚平, 王宏庭, 张璐. 施氮与灌水对夏玉米产量和水氮利用的影响. 植物营养与肥料学报, 2012, 18: 1354-1361.
Xie Y H, Li L, Hong J P, Wang H T, Zhang L. Effects of nitrogen application and irrigation on grain yield, water and nitrogen utilizations of summer maize. Plant Nutr Fert Sci, 2012, 18: 1354-1361. (in Chinese with English abstract)
[32] 李广浩, 董树亭, 赵斌, 张吉旺, 刘鹏. 不同土壤水分状况下实现夏玉米高产及氮素高效的控释尿素用量研究. 植物营养与肥料学报, 2018, 24: 579-589.
Li G H, Dong S T, Zhao B, Zhang J W, Liu P. Optimal application rates of controlled release urea for high yield and high nitrogen use efficiency of summer maize under different soil water conditions. J Plant Nutr Fert, 2018, 24: 579-589. (in Chinese with English abstract)
[33] 侯云鹏, 孔丽丽, 杨建, 尹彩侠, 秦裕波, 李前, 于雷, 王立春, 谢佳贵. 氮肥运筹对春玉米产量、养分吸收和转运的影响. 玉米科学, 2016, 24(4): 137-143.
Hou Y P, Kong L L, Yang J, Yin C X, Qin Y B, Li Q, Yu L, Wang L C, Xie J G. Effects of nitrogen fertilizer management on yield, nutrient absorption and translocation of spring maize. J Maize Sci, 2016, 24(4): 137-143. (in Chinese with English abstract)
[34] 刘凡, 刘斌祥, 刘佳媛, 杜霞, 孔凡磊, 袁继超. 水氮互作对川中丘陵区玉米水肥利用效率和产量形成的影响. 干旱地区农业研究, 2021, 39(6): 200-206.
Liu F, Liu B X, Liu J Y, Du X, Kong F L, Yuan J C. Effect of water and nitrogen interaction on maize utilization efficiency of fertilizer, water, and yield formation in the middle hilly area of Sichuan province. Agric Res Arid Areas, 2021, 39(6): 200-206. (in Chinese with English abstract)
[35] 杨学云, 张树兰, 袁新民, 同延安. 长期施肥对塿土硝态氮分布、累积和移动的影响. 植物营养与肥料学报, 2001, 7: 134-138.
Yang X Y, Zhang S L, Yuan X M, Tong Y A. A long-term experiment on effect of organic manure and chemical fertilizer on distribution, accumulation, and movement of NO3-N in soil. Plant Nutr Fert Sci, 2001, 7: 134-138. (in Chinese with English abstract)
[36] Manevski K, Brgesen C D, Li X X. Optimising crop production and nitrate leaching in China: measured and simulated effects of straw incorporation and nitrogen fertilization. Eur J Agron, 2016, 80: 32-44.
doi: 10.1016/j.eja.2016.06.009
[37] Zhou S L, Wu Y C, Wang Z M, Lu L Q, Wang R Z. The nitrate leached below maize root zone is available for deep rooted wheat in winter wheat-summer maize rotation in the North China Plain. Environ Pollut, 2008, 152: 723-730.
doi: 10.1016/j.envpol.2007.06.047
[38] 王朝辉, 李生秀, 王西娜, 苏涛. 旱地土壤硝态氮残留淋溶及影响因素研究. 土壤, 2006, 38: 676-681.
Wang Z H, Li S X, Wang X N, Su T. Nitrate nitrogen residue and leaching in dryland soil and influence factors. Soils, 2006, 38: 676-681. (in Chinese with English abstract)
[39] Moreno F, Cayuela J A, Fermández-Boy J E, Murillo J M, Cabrera F. Water balance and nitrate leaching in an irrigation maize crop in SW Spain. Agric Water Manag, 1996, 32: 71-83.
doi: 10.1016/S0378-3774(96)01256-5
[40] 李建明, 于雪梅, 王雪威, 张俊威, 焦晓聪, 黄茜. 基于产量品质和水肥利用效率西瓜滴灌水肥制度优化. 农业工程学报, 2020, 36(9): 75-83.
Li J M, Yu X M, Wang X W, Zhang J W, Jiao X C, Huang Q. Optimization of fertigation scheduling for drip-irrigated watermelon based on its yield, quality and fertilizer and water use efficiency. Trans CSAE, 2020, 36(9): 75-83. (in Chinese with English abstract)
[41] 李建明, 潘铜华, 王玲慧, 杜清洁, 常毅博, 张大龙, 刘媛. 水肥耦合对番茄光合、产量及水分利用效率的影响. 农业工程学报, 2014, 30(10): 82-90.
Li J M, Pan T H, Wang L H, Du Q J, Chang Y B, Zhang D L, Liu Y. Effects of water-fertilizer coupling on tomato photosynthesis, yield and water use efficiency. Trans CSAE, 2014, 30(10): 82-90. (in Chinese with English abstract)
[42] 钟华, 郭旋, 李鹏, 张成军, 赵同科. 东北雨养玉米氮肥优化管理综合评价. 植物营养与肥料学报 2022, 28: 357-365.
Zhong H, Guo X, Li P, Zhang C J, Zhao T K. Comprehensive assessment of nitrogen fertilizer management for maize in northeast rainfed region. J Plant Nutr Fert, 2022, 28: 357-365. (in Chinese with English abstract)
[1] YAN Jin-Yao, SONG Yi, LU Zhi-Feng, REN Tao, LU Jian-Wei. Effect of phosphorus fertilizer rate on rapeseed yield and quality (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1668-1677.
[2] YU Xin-Ying, WANG Chun-Yun, LI Da-Shuang, WANG Zong-Kai, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHOU Guang-Sheng. Formation mechanism of yield stability in high-yielding rapeseed varieties [J]. Acta Agronomica Sinica, 2023, 49(6): 1601-1615.
[3] XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642.
[4] ZHANG Zhen-Bo, JIA Chun-Lan, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize [J]. Acta Agronomica Sinica, 2023, 49(6): 1616-1629.
[5] LEI Xin-Hui, LENG Jia-Jun, TAO Jin-Cai, WAN Chen-Xi, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, FENG Bai-Li, GAO Jin-Feng. Effects of foliar spraying selenium on photosynthetic characteristics, yield, and selenium accumulation of common buckwheat (Fagopyrum esculentum M.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1678-1689.
[6] TAO Yue-Yue, SHENG Xue-Wen, XU Jian, SHEN Yuan, WANG Hai-Hou, LU Chang-Ying, SHEN Ming-Xing. Characteristics of heat and solar resources allocation and utilization in rice- oilseed rape double cropping systems in the Yangtze River Delta [J]. Acta Agronomica Sinica, 2023, 49(5): 1327-1338.
[7] WEI Hai-Min, TAO Wei-Ke, ZHOU Yan, YAN Fei-Yu, LI Wei-Wei, DING Yan-Feng, LIU Zheng-Hui, LI Gang-Hua. Panicle silicon fertilizer optimizes the absorption and distribution of mineral elements in rice (Oryza sativa L.) in coastal saline-alkali soil to improve salt tolerance [J]. Acta Agronomica Sinica, 2023, 49(5): 1339-1349.
[8] ZHANG Jun-Jie, CHEN Jin-Ping, TANG Yu-Lou, ZHANG Rui, CAO Hong-Zhang, WANG Li-Juan, MA Meng-Jin, WANG Hao, WANG Yong-Chao, GUO Jia-Meng, KRISHNA SV Jagadish, YANG Qing-Hua, SHAO Rui-Xin. Effects of drought stress before and after anthesis on photosynthetic characteristics and yield of summer maize after re-watering [J]. Acta Agronomica Sinica, 2023, 49(5): 1397-1409.
[9] YUE Hai-Wang, HAN Xuan, WEI Jian-Wei, ZHENG Shu-Hong, XIE Jun-Liang, CHEN Shu-Ping, PENG Hai-Cheng, BU Jun-Zhou. Comprehensive evaluation of maize hybrids tested in Huang-Huai-Hai summer maize regional trial based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1231-1248.
[10] LIU Xin-Meng, CHENG Yi, LIU Yu-Wen, PANG Shang-Shui, YE Xiu-Qin, BU Yan-Xia, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, REN Hao, LIU Peng. Difference analysis of yield and resource use efficiency of modern summer maize varieties in Huang-Huai-Hai region [J]. Acta Agronomica Sinica, 2023, 49(5): 1363-1371.
[11] WU Zong-Sheng, XU Cai-Long, LI Rui-Dong, XU Yi-Fan, SUN Shi, HAN Tian-Fu, SONG Wen-Wen, WU Cun-Xiang. Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean [J]. Acta Agronomica Sinica, 2023, 49(4): 1052-1064.
[12] ZHANG Jin-Xin, GE Jun-Zhu, MA Wei, DING Zai-Song, WANG Xin-Bing, LI Cong-Feng, ZHOU Bao-Yuan, ZHAO Ming. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain [J]. Acta Agronomica Sinica, 2023, 49(4): 879-892.
[13] SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150.
[14] ZHANG Chen-Hui, ZHANG Yan, LI Guo-Hui, YANG Zi-Jun, ZHA Ying-Ying, ZHOU Chi-Yan, XU Ke, HUO Zhong-Yang, DAI Qi-Gen, GUO Bao-Wei. Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice [J]. Acta Agronomica Sinica, 2023, 49(4): 1039-1051.
[15] WU Xiang-Qi, LIU Bo, ZHANG Wei, YANG Xue-Ni, GUO Zi-Yan, LIU Tie-Ning, ZHANG Xu-Dong, HAN Qing-Fang. Effects of wheat-pea intercropping on population photosynthetic characteristics and crops productivity [J]. Acta Agronomica Sinica, 2023, 49(4): 1079-1089.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .