Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (5): 1282-1291.doi: 10.3724/SP.J.1006.2023.21026

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Quality selection indices and parent combination principle of weak-gluten wheat

ZHANG Xiao1(), LU Cheng-Bin1, JIANG Wei1, ZHANG Yong1, LYU Guo-Feng1, WU Hong-Ya1, WANG Chao-Shun1, LI Man1, WU Su-Lan1, GAO De-Rong1,2,*()   

  1. 1Lixiahe Institute of Agricultural Sciences of Jiangsu /Key Laboratory of Wheat Biology and Genetic Improvement for Low&Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou 225007, Jiangsu, China
    2Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2022-04-07 Accepted:2022-10-10 Online:2023-05-12 Published:2022-11-01
  • Contact: *E-mail: gdr@wheat.org.cn
  • Supported by:
    National Science Foundation of China(32071999);Key Research and Development Program of Jiangsu Province(BE2021335);Seed Industry Revitalization Jie Bang Gua Shuai Project of Jiangsu Province(JBGS [2021] 006);China Agriculture Research System of MOF and MARA(CARS-03-8)

Abstract:

To identify the efficient indices of quality selection and the principle of parent combination for weak-gluten wheat, a 7×6 diallel crossing of Griffing II analysis involving 21 combinations of seven wheat varieties with different quality types was performed, and genetic analyses of the quality indices of F2 kernels was carried out. The results showed there were extremely significant differences in general combining ability (GCA) of the quality indices. The effect values of GCA of hardness, sodium dodecyl sulfate (SDS) sedimentation value, and solvent retention capacity (SRC) were relatively higher, while those of GCA of protein content and gluten content were relatively lower. Meanwhile, significant or extremely significant differences in special combining ability (SCA) of the quality indices were observed, except for protein content, SDS sedimentation value, sucrose SRC, and gluten index. Hardness, SDS sedimentation value, and SRC had the high general combining ability, indicating that additive effect was dominant. The negative GCA effects of weak-gluten wheat and the positive GCA effects of mid-gluten and strong-gluten wheat were significant. The narrow heritability of hardness, SDS sedimentation value, water SRC, and sodium carbonate SRC was as high as 91.23%, 82.66%, 83.81%, and 83.96%, respectively, indicating that they could be strictly screened in the early generations. The narrow heritability of lactic acid SRC and sucrose SRC was 72.79% and 75.26%, respectively. The narrow heritability of protein content, wet gluten content, dry gluten content, and gluten index was as low as 30.72%, 25.62%, 32.62%, and 49.82%, respectively. The quality analysis of high generation lines in different combinations revealed that grain hardness, protein content, SDS sedimentation value, SRC, and other quality indices of the descendant of weak-gluten/weak-gluten wheat combinations were the lowest, followed by those of the weak-gluten/strong-gluten wheat combinations, while those of the strong-gluten/strong-gluten and medium-gluten/strong-gluten wheat combinations were the highest with the rare separation of weak-gluten lines. In conclusion, hardness, SDS sedimentation value, water SRC, and sodium carbonate SRC were the high-efficient selection indices for quality breeding. We suggested at least one parent of weak-gluten quality should be selected in the breeding of weak-gluten wheat.

Key words: weak-gluten wheat, quality selection, principle of parent combination, combining ability, heritability

Table 1

Analysis of variance for combing ability in different quality traits (F-value)"

变异来源
Source of variance
硬度
Grain
hardness
蛋白质含量
Protein
content
SDS沉淀值
SDS
sedimentation value
水SRC
Water
SRC
乳酸SRC
Lactic
acid SRC
蔗糖SRC
Sucrose
SRC
碳酸钠SRC
Sodium
carbonate SRC
湿面筋含量
Wet gluten
content
干面筋含量
Dry gluten
content
面筋指数
Gluten
index
一般配合力 GCA 512.51** 0.77** 7.97** 66.11** 78.06** 76.33** 151.02** 9.76** 2.79** 166.50**
特殊配合力 SCA 11.75** 0.21 0.29 3.75** 7.20** 4.20 6.61** 3.64* 0.81* 26.67

Table 2

General combing ability for quality traits in seven wheat parents"

亲本
Parent
籽粒硬度
Grain
hardness
蛋白质含量
Protein
content
SDS沉淀值
SDS
sedimentation value
水SRC
Water
SRC
乳酸SRC
Lactic
acid SRC
蔗糖SRC
Sucrose
SRC
碳酸钠SRC
Sodium
carbonate
SRC
湿面筋含量
Wet gluten
content
干面筋含量
Dry gluten
content
面筋指数
Gluten
index
扬麦13
Yangmai 13
-9.53 d 0.38 a -1.05 c -4.74 e -4.59 e -5.39 d -6.82 d 1.87 a 1.22 a -4.14 cd
扬麦16
Yangmai 16
11.84 a 0.42 a 1.07 b 2.97 b 2.91 b 3.66 ab 5.65 ab 1.46 ab 0.72 ab -3.11 bcd
扬麦18
Yangmai 18
-10.63 d 0.05 abc -1.04 c -2.41 d -3.35 de -2.50 c -3.16 c -0.22 bc 0.04 bc -7.31 d
扬麦20
Yangmai 20
-5.54 c -0.22 bcd -1.02 c -2.73 d -2.85 d -2.83 c -5.13 d -0.71 cd -0.33 cd -2.08 bc
扬麦23
Yangmai 23
7.03 b -0.24 cd 1.08 b 2.25 b 2.92 b 2.72 b 4.16 b -0.62 cd -0.26 cd 6.77 a
扬麦24
Yangmai 24
-5.75 c -0.65 d -0.86 c -0.73 c -0.98 c -0.83 c -1.55 c -2.23 d -1.03 d 1.71 b
镇麦9号
Zhenmai 9
12.57 a 0.26 ab 1.82 a 5.41 a 5.94 a 5.18 a 6.85 a 0.45 abc -0.35 cd 8.16 a

Table 3

Special combing ability for hardness in 21 crosses"

亲本
Parent
扬麦16
Yangmai 16
扬麦18
Yangmai 18
扬麦20
Yangmai 20
扬麦23
Yangmai 23
扬麦24
Yangmai 24
镇麦9号
Zhenmai 9
扬麦13 Yangmai 13 -3.42 3.93 -0.17 2.74 2.65 -5.73
扬麦16 Yangmai 16 1.34 -0.57 1.70 -1.95 2.90
扬麦18 Yangmai 18 0.34 0.42 -2.78 -3.25
扬麦20 Yangmai 20 -1.89 2.39 -0.09
扬麦23 Yangmai 23 -4.72 1.75
扬麦24 Yangmai 24 4.42

Table 4

Special combing ability for water SRC (solvent retention capacity) in 21 crosses"

亲本
Parent
扬麦16
Yangmai 16
扬麦18
Yangmai 18
扬麦20
Yangmai 20
扬麦23
Yangmai 23
扬麦24
Yangmai 24
镇麦9号
Zhenmai 9
扬麦13 Yangmai 13 -1.18 1.90 1.55 0.44 0.68 -3.39
扬麦16 Yangmai 16 -0.34 -0.93 1.23 -2.47 3.69
扬麦18 Yangmai 18 1.27 -1.16 -0.05 -1.62
扬麦20 Yangmai 20 -1.64 0.28 -0.54
扬麦23 Yangmai 23 0.41 0.71
扬麦24 Yangmai 24 1.15

Table 5

Genetic parameter of different quality traits"

品质性状
Quality trait
加性方差
Additive
variance
显性方差
Dominance
variance
遗传方差
Genetic
variance
表型方差
Phenotypic
variance
遗传决定度
Degree of genetic
determination
狭义遗传力
Narrow sense
heritability
籽粒硬度 Grain hardness 200.30 8.01 208.31 219.55 94.88 91.23
蛋白质含量 Protein content 0.22 0.06 0.29 0.73 39.28 30.72
SDS沉淀值 Sedimentation value 3.07 0.12 3.19 3.72 85.86 82.66
水SRC Water SRC 24.94 3.21 28.15 29.76 94.59 83.81
乳酸SRC Lactic acid SRC 28.35 5.50 33.84 38.94 86.90 72.79
蔗糖SRC Sucrose SRC 28.85 1.56 30.41 38.34 79.31 75.26
碳酸钠SRC Sodium carbonate SRC 57.77 4.40 62.16 68.80 90.35 83.96
湿面筋含量 Wet gluten content 2.45 1.91 4.35 9.55 45.56 25.62
干面筋含量 Dry gluten content 0.79 0.40 1.19 2.43 48.91 32.62
面筋指数 Gluten index 55.94 11.83 67.77 112.27 60.36 49.82

Table 6

Quality trait of high generation lines from different quality types combination in 2020"

品质性状
Quality
trait
扬麦16/镇麦168
Yangmai 16/Zhenmai 168
扬麦15/镇麦9号
Yangmai 15/Zhenmai 9
扬麦9号/扬麦18
Yangmai 9/Yangmai 18
变幅
Range
平均值
Mean±SD
变幅
Range
平均值
Mean±SD
变幅
Range
平均值
Mean±SD
籽粒硬度 Grain hardness 44.70-55.63 49.68±2.68 3.67-60.56 23.05±19.81 0.55-10.56 5.04±2.93
蛋白质含量 Protein content (%) 12.25-15.86 13.86±0.71 12.01-13.58 12.83±0.52 10.76-12.78 12.18±0.45
沉淀值 Sedimentation value (mL) 11.50-18.00 15.06±1.35 9.75-14.50 11.54±1.19 5.25-10.00 7.51±1.18
水SRC Water solvent retention capacity (%) 77.66-88.43 83.26±2.28 70.06-85.77 75.63±4.63 71.26-76.22 73.79±1.55

Fig. 1

Quality trait of high generation lines from different quality types combination in 2020 Both ends of box plot indicates the extreme range of traits; box: the mean of the trait; the lines in the middle: the median line; ?: the individual extreme value. A represents the combination of Yangmai16/Zhenmai 168; B represents the combination of Yangmai 15/Zhenmai 9; C represents the combination of Yangmai 9/Yangmai 18."

Table 7

Quality trait of high generation lines from different quality types combination in 2021"

品质性状
Quality
trait
西农529/镇麦9号
Xinong 529/Zhenmai 9
扬麦22/镇麦9号
Yangmai 22/Zhenmai 9
扬麦22/扬辐麦4号
Yangmai 22/Yangfumai 4
变幅
Range
平均值 Mean±SD 变幅
Range
平均值 Mean±SD 变幅
Range
平均值Mean±SD
蛋白质含量 Protein content (%) 11.99-15.02 13.26±0.69 11.05-14.92 12.51±0.79 10.55-13.44 11.78±0.68
沉淀值 Sedimentation value (mL) 7.75-14.25 10.98±1.61 5.00-15.25 10.27±2.94 2.50-12.50 5.65±1.52
水SRC Water SRC (%) 68.12-92.48 79.48±6.37 65.18-75.60 70.79±2.60 64.94-73.62 68.57±2.33
乳酸SRC Lactic acid SRC (%) 60.18-99.66 86.23±7.74 69.58-86.90 78.22±3.62 66.46-79.02 70.82±2.71
碳酸钠SRC Sodium carbonate SRC (%) 85.06-119.88 103.93±11.01 80.50-94.740 87.73±3.31 78.32-87.90 82.96±2.23
蔗糖SRC Sucrose SRC (%) 95.24-125.92 113.59±9.17 95.06-106.96 100.93±2.77 86.48-99.46 91.88±3.49

Fig. 2

Quality traits of high generation lines from different quality types combination in 2021 Both ends of box plot indicates the extreme range of traits; box: the mean of the trait; the lines in the middle: the median line; ?: the individual extreme value. A1 represents the combination of Xinong 529/Zhenmai 9 combination; B1 represents the combination of Yangmai 22/Zhenmai 9; C1 represents the combination of Yangmai 22/Yangfumai 4."

[1] 魏益民, 张波, 关二旗, 张国权, 张影全, 宋哲民. 中国冬小麦品质改良研究进展. 中国农业科学, 2013, 46: 4189-4196.
doi: 10.3864/j.issn.0578-1752.2013.20.002
Wei Y M, Zhang B, Guan E Q, Zhang G Q, Zhang Y Q, Song Z M. Advances in study of quality property improvement of winter wheat in China. Sci Agric Sin, 2013, 46: 4189-4196. (in Chinese with English abstract)
[2] 张晓, 张勇, 高德荣, 别同德, 张伯桥. 中国弱筋小麦育种进展及生产现状. 麦类作物学报, 2012, 32: 184-189.
Zhang X, Zhang Y, Gao D R, Bie T D, Zhang B Q. The development of weak-gluten wheat breeding and present situation of its production. J Triticeae Crops, 2012, 32: 184-189. (in Chinese with English abstract)
[3] 刘健, 张晓, 李曼, 文莉, 江伟, 张勇, 高德荣. 扬麦系列小麦品种的饼干品质分析. 麦类作物学报, 2021, 41: 50-60.
Liu J, Zhang X, Li M, Wen L, Jiang W, Zhang Y, Gao D R. Quality analysis of Yangmai series wheat varieties for biscuit-making. J Triticeae Crops, 2021, 41: 50-60 (in Chinese with English abstract).
[4] 刘莲. 小麦部分品质性状与主要农艺性状的遗传及配合力分析. 山东农业大学硕士学位论文, 山东泰安, 2004.
Liu L. The Analysis of Genetic and Combining Ability for Some Quality and Major Agronomic Characters in Wheat. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2004. (in Chinese with English abstract)
[5] 桑伟. 冬小麦F1、F2代主要品质性状和产量性状杂种优势的关系及其遗传分析. 石河子大学硕士学位论文, 新疆石河子, 2007.
Sang W. Study on Heterosis and Inheritance of Main Quality and Yield Traits of Winter Wheat in F1 and F2 Hybrid. MS Thesis of Shihezi University, Shihezi, Xinjiang, China, 2007. (in Chinese with English abstract)
[6] 姚金保, 杨学明, 姚国才, 张艳, 顾正中, 周羊梅. 弱筋小麦品种蛋白质含量的遗传分析. 麦类作物学报, 2007, 27: 1005-1009.
Yao J B, Yang X M, Yao G C, Zhang Y, Gu Z Z, Zhou Y M. Inheritance of protein content in weak gluten wheat cultivars. J Triticeae Crops, 2007, 27: 1005-1009. (in Chinese with English abstract)
[7] 张媛菲, 彭绍峰, 郭军伟, 雷全奎, 王洁琼, 吕树作. 几个小麦品种品质性状遗传特性分析. 作物研究, 2020, 34: 469-475.
Zhang Y F, Peng S F, Guo J W, Lei Q K, Wang J Q, Lyu S Z. Genetic characteristics analysis of quality traits in wheat. Crop Res, 2020, 34: 469-475. (in Chinese with English abstract)
[8] Pasha I, Anjum F M, Morris C F. Grain hardness: a major determinant of wheat quality. Food Sci Technol Internat, 2010, 16: 511-522.
doi: 10.1177/1082013210379691
[9] Ma F, Baik B K. Soft wheat quality characteristics required for making baking powder biscuits. J Cereal Sci, 2018, 79: 127-133.
doi: 10.1016/j.jcs.2017.10.016
[10] Zheng B Q, Zhao H, Zhou Q, Cai J, Wang X, Cao W X, Dai T B, Jiang D. Relationships of protein composition, gluten structure, and dough rheological properties with short biscuits quality of soft wheat varieties. Agron J, 2020, 112: 1921-1930.
doi: 10.1002/agj2.v112.3
[11] Huebner F R, Bietz J A, Nelsen T, Bains G S, Finney P L. Soft wheat quality as related to protein composition. Cereal Chem, 1999, 76: 650-655.
doi: 10.1094/CCHEM.1999.76.5.650
[12] Bettge A D, Morris C F. Relationships among grain hardness, pentosan fractions, and end-use quality of wheat. Cereal Chem, 2000, 77: 241-247.
doi: 10.1094/CCHEM.2000.77.2.241
[13] Gaines C S. Prediction of sugar-snap cookie diameter using sucrose solvent retention capacity, milling softness, and flour protein content. Cereal Chem, 2004, 81: 549-552.
doi: 10.1094/CCHEM.2004.81.4.549
[14] 陈满峰. 弱筋小麦面粉理化品质性状遗传变异、肥料运筹及其与酥性饼干品质的关系. 扬州大学硕士学位论文, 江苏扬州, 2008.
Chen M F. The Variation of Flour Quality Characters and the Fertilizer Operations in Chinese soft Wheat and Correlation with the Short Biscuit Quality. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2008. (in Chinese with English abstract)
[15] 吴宏亚. 农学角度的中国饼干研究. 扬州大学博士学位论文, 江苏扬州, 2014.
Wu H Y. Chinese Biscuit Study-from View of Agronomy. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2014. (in Chinese with English abstract)
[16] Jeon S, Baik B K, Kweon M. Solvent retention capacity application to assess soft wheat flour quality for making white-salted noodles. Cereal Chem, 2019, 96: 497-507.
doi: 10.1002/cche.2019.96.issue-3
[17] Bettge A D, Morris C F, DeMacon V L, Kidwell K K. Adaptation of AACC method 56-11, solvent retention capacity, for use as an early generation selection tool for cultivar development. Cereal Chem, 2002, 79: 670-674.
doi: 10.1094/CCHEM.2002.79.5.670
[18] 张岐军, 张艳, 何中虎, Pena R J. 软质小麦品质性状与酥性饼干品质参数的关系研究. 作物学报, 2005, 31: 1125-1131.
Zhang Q J, Zhang Y, He Z H, Pena R J. Relationship between soft wheat quality traits and cookie quality parameters. Acta Agron Sin, 2005, 31: 1125-1131. (in Chinese with English abstract)
[19] Kweon M, Slade L, Levine H. Solvent retention capacity (SRC) testing of wheat flour: principles and value in predicting flour functionality in different wheat-based food processes and in wheat breeding: a review. Cereal Chem, 2011, 88: 537-552.
doi: 10.1094/CCHEM-07-11-0092
[20] Souza E J, Sneller C, Guttieri M J, Sturbaum A, Griffey C, Sorrells M, Ohm H, Sanford D V. Basis for selecting soft wheat for end-use quality. Crop Sci, 2012, 52: 21-31.
doi: 10.2135/cropsci2011.02.0090
[21] 张晓, 李曼, 江伟, 朱冬梅, 高德荣. 小麦三个品质性状微量检测方法的应用与评价. 麦类作物学报, 2014, 34: 1651-1655.
Zhang X, Li M, Jiang W, Zhu D M, Gao D R. Application and evaluation of three micro detection methods for process quality in wheat breeding. J Triticeae Crops, 2014, 34: 1651-1655. (in Chinese with English abstract)
[22] 郭天财, 马冬云, 朱云集, 王晨阳, 夏国军, 罗毅. 冬播小麦品种主要品质性状的基因型与环境及其互作效应分析. 中国农业科学, 2004, 37: 948-953.
Guo T C, Ma D Y, Zhu Y Q, Wang C Y, Xia G J, Luo Y. Geneotype, environment and their interactive effects on main quality traits of winter-sown wheat variety. Sci Agric Sin, 2004, 37: 948-953. (in Chinese with English abstract)
[23] Kong L A, Si J S, Zhang B, Feng B, Li S D, Wang F H. Environmental modification of wheat grain protein accumulation and associated processing quality: a case study of China. Austr J Crop Sci, 2013, 7: 173-181.
[24] 李朝苏, 吴晓丽, 汤永禄, 杨武云, 吴元奇, 吴春, 马孝玲, 李式昭. 四川近十年小麦主栽品种的品质状况. 作物学报, 2016, 42: 803-812.
doi: 10.3724/SP.J.1006.2016.00803
Li Z S, Wu X L, Tang Y L, Yang W Y, Wu Y Q, Wu C, Ma X L, Li S Z. Quality of major wheat cultivars grown in Sichuan province in recent decade. Acta Agron Sin, 2016, 42: 803-812. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00803
[25] 高德荣, 宋归华, 张晓, 张伯桥, 李曼, 江伟, 吴素兰. 弱筋小麦扬麦13品质对氮肥响应的稳定性分析. 中国农业科学, 2017, 50: 4100-4106.
doi: 10.3864/j.issn.0578-1752.2017.21.004
Gao D R, Song G H, Zhang X, Zhang B Q, Li M, Jiang W, Wu S L. Quality consistency of soft wheat Yangmai 13 under different. Sci Agric Sin, 2017, 50: 4100-4106. (in Chinese with English abstract)
[26] 张美微, 王晨阳, 郭天财, 马冬云, 朱云集. 施氮量对冬小麦蛋白质品质和面粉色泽的影响. 植物营养与肥料学报, 2012, 18: 1312-1318.
Zhang M W, Wang C Y, Guo T C, Ma D Y, Zhu Y J. Effects of nitrogen fertilization on protein quality and flour color of winter wheat. Plant Nutr Fert Sci, 2012, 18: 1312-1318. (in Chinese with English abstract)
[27] 金欣欣, 姚艳荣, 贾秀领, 姚海坡, 申海平, 崔永增, 李谦. 基因型和环境对小麦产量、品质和氮素效率的影响. 作物学报, 2019, 45: 635-644.
doi: 10.3724/SP.J.1006.2019.81072
Jin X X, Yao Y R, Jia X L, Yao H P, Shen H P, Cui Y Z, Li Q. Effects of genotype and environment on wheat yield, quality, and nitrogen use efficiency. Acta Agron Sin, 2019, 45: 635-644. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.81072
[28] De Santis M A, Giuliani M M, Flagella Z, Reyneri A, Blandino M. Impact of nitrogen fertilization strategies on the protein content, gluten composition and rheological properties of wheat for biscuit production. Field Crops Res, 2020, 254: 107829.
doi: 10.1016/j.fcr.2020.107829
[29] 张晓, 李曼, 刘大同, 江伟, 张勇, 高德荣. 扬麦系列品种品质性状分析及育种启示. 中国农业科学, 2020, 53: 1309-1321.
doi: 10.3864/j.issn.0578-1752.2020.07.002
Zhang X, Li M, Liu D T, Jiang W, Zhang Y, Gao D R. Analysis of quality traits and breeding inspiration in Yangmai series wheat varieties. Sci Agric Sin, 2020, 53: 1309-1321. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.07.002
[30] 李曼, 张晓, 刘大同, 江伟, 高德荣, 张勇. 弱筋小麦品质评价指标研究. 核农学报, 2021, 35: 1979-1986.
doi: 10.11869/j.issn.100-8551.2021.09.1979
Li M, Zhang X, Liu D T, Jiang W, Gao D R, Zhang Y. Research on quality evaluation indices of weak gluten wheat. J Nucl Agric Sci, 2021, 35: 1979-1986. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2021.09.1979
[31] 陈锋, 李根英, 耿洪伟, 夏兰芹, 夏先春, 何中虎. 小麦籽粒硬度及其分子遗传基础研究回顾与展望. 中国农业科学, 2005, 38: 1088-1094.
Chen F, Li G Y, Geng H W, Xia L Q, Xia X C, He Z H. Review and prospect of wheat kernel hardness and its molecular genetics basis. Sci Agric Sin, 2005, 38: 1088-1094. (in Chinese with English abstract)
[1] MA Juan, ZHU Wei-Hong, LIU Jing-Bao, YU Ting, HUANG Lu, GUO Guo-Jun. Multi-locus genome-wide association study and prediction for general combining ability of maize ear length [J]. Acta Agronomica Sinica, 2023, 49(6): 1562-1572.
[2] YAN Weikai. A critical review on the principles and procedures for cultivar development and evaluation [J]. Acta Agronomica Sinica, 2022, 48(9): 2137-2154.
[3] LI Ting, WANG Ya-Peng, DONG Yuan, GUO Rui-Shi, LI Dong-Mei, TANG Ya-Ling, ZHANG Xing-Hua, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic basis of kernel size related traits and their combining ability based on a hybrid population in maize [J]. Acta Agronomica Sinica, 2022, 48(10): 2451-2462.
[4] LI Jing-Lin, LI Jia-Lin, LI Xin-Peng, AN Bao-Guang, ZENG Xiang, WU Yong-Zhong, HUANG Pei-Jing, LONG Tuan. Creation and combining ability analysis of recessive genic sterile lines with a new ptc1 locus in rice [J]. Acta Agronomica Sinica, 2021, 47(11): 2173-2183.
[5] ZHANG Yi,XU Nai-Yin,GUO Li-Lei,YANG Zi-Guang,ZHANG Xiao-Qing,YANG Xiao-Ni. Optimization of test location number and replicate frequency in regional winter wheat variety trials in northern winter wheat region in China [J]. Acta Agronomica Sinica, 2020, 46(8): 1166-1173.
[6] XIANG Li-Yuan,XU Kai,SU Jing,WU Chao,YUAN Xiong,ZHENG Xing-Fei,DIAO Ying,HU Zhong-Li,LI Lan-Zhi. Genetic dissection of combining ability and heterosis of rice agronomic traits based on pathway analysis [J]. Acta Agronomica Sinica, 2019, 45(9): 1319-1326.
[7] Lan-Fen WANG, Jing WU, Zhao-Li WANG, Ji-Bao CHEN, Li YU, Qiang WANG, Shu-Min WANG. Adaptability and Phenotypic Variations of Agronomic Traits in Common Bean Germplasm Resources in Different Environments [J]. Acta Agronomica Sinica, 2018, 44(03): 357-368.
[8] ZHANG Zheng,ZHANG Xue-Li,MO Bo-Cheng,Dai Zhi-Jun,HU Zhong-Li,LI Lan-Zhi,ZHENG Xing-Fei. Combining Ability Analysis ofAgronomic Trait in Indica × IndicaHybrid Rice [J]. Acta Agron Sin, 2017, 43(10): 1448-1457.
[9] WANG Bo-Xin,WANG Ya-Hui,CHEN Peng-Fei,LIU Xu-Dong-Yu,FENG Zhi-Qian,HAO Yin-Chuan,ZHANG Ren-He,ZHANG Xing-Hua,XUE Ji-Quan*. Combining Ability of Maize Inbred Lines from ShaanA Group and Shaan B Group under Different Density Conditions [J]. Acta Agron Sin, 2017, 43(09): 1328-1336.
[10] XIE Hui,DANG Xiao-Jing,LIU Er-Bao,ZENG Si-Yuan,HONG De-Lin. Identifying SSR Marker Locus Genotypes with Elite Combining Ability for Yield Traits in Backbone Parents of Japonica Hybrid Rice (Oryza sativa L.) in Jianghuai Area [J]. Acta Agron Sin, 2016, 42(03): 330-343.
[11] XU Nai-Yin,JIN Shi-Qiao,LI Jian. Design of Test Location Number and Replicate Frequency in the Regional Cotton Variety Trials in China [J]. Acta Agron Sin, 2016, 42(01): 43-50.
[12] LUO Jun,XU Li-Ping,QIU Jun,ZHANG Hua,YUAN Zhao-Nian,DENG Zu-Hu,CHEN Ru-Kai,QUE You-Xiong. Evaluation of Sugarcane Test Environments and Ecological Zone Division in China Based on HA-GGE Biplo [J]. Acta Agron Sin, 2015, 41(02): 214-227.
[13] LI Lu-Jiang,LAN Hai,PAN Guang-Tang,YANG Ke-Cheng. Effect of Different Recurrent Selection Methods on a Narrow Base Maize Population [J]. Acta Agron Sin, 2014, 40(11): 1895-1904.
[14] CUI Chao,GAO Ju-Lin*,YU Xiao-Fang*,SU Zhi-Jun,WANG Zhi-Gang,SUN Ji-Ying,HU Shu-Ping,WANG Hai-Yan,GAO Ying-Bo,GAO Xin. Combining Ability Analysis of Traits Related to Nitrogen Use Efficiency in Eighteen Maize Inbred Lines [J]. Acta Agron Sin, 2014, 40(05): 838-849.
[15] WANG Jian-Jun,YONG Hong-Jun,ZHANG Xiao-Cong,LI Ming-Shun,ZHANG De-Gui,BAI Li,GAO Zhi-Qiang,ZHANG Shi-Huang,LI Xin-Hai. Combining Ability and Heterosis Effects between 12 Exotic Maize Populations and Domestic Germplasm [J]. Acta Agron Sin, 2012, 38(12): 2170-2177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .