Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (5): 1272-1281.doi: 10.3724/SP.J.1006.2023.24070
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LI Hui1,2(), LU Yi-Ping1, WANG Xiao-Kai1, WANG Lu-Yao1, QIU Ting-Ting1, ZHANG Xue-Ting1, HUANG Hai-Yan1, CUI Xiao-Yu1,*()
[1] |
Tang R J, Wang C, Li K, Luan S. The CBL-CIPK calcium signaling network: unified paradigm from 20 years of discoveries. Trends Plant Sci, 2020, 25: 604-617.
doi: 10.1016/j.tplants.2020.01.009 |
[2] |
Yu Q, An L, Li W. The CBL-CIPK network mediates different signaling pathways in plants. Plant Cell Rep, 2014, 33: 203-214.
doi: 10.1007/s00299-013-1507-1 pmid: 24097244 |
[3] |
Ma X, Li Q H, Yu Y N, Qiao Y M, Haq S U, Gong Z H. The CBL-CIPK pathway in plant response to stress signals. Int J Mol Sci, 2020, 21: 5668.
doi: 10.3390/ijms21165668 |
[4] |
Luan S. The CBL-CIPK network in plant calcium signaling. Trends Plant Sci, 2009, 14: 37-42.
doi: 10.1016/j.tplants.2008.10.005 pmid: 19054707 |
[5] |
Albrecht V, Ritz O, Linder S, Harter K, Kudla J. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. EMBO J, 2001, 20: 1051-1063.
doi: 10.1093/emboj/20.5.1051 pmid: 11230129 |
[6] |
Kudla J, Xu Q, Harter K, Gruissem W, Luan S. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc Natl Acad Sci USA, 1999, 96: 4718-4723.
doi: 10.1073/pnas.96.8.4718 pmid: 10200328 |
[7] |
Kudla J, Batistic O, Hashimoto K. Calcium signals: the lead currency of plant information processing. Plant Cell, 2010, 22: 541-563.
doi: 10.1105/tpc.109.072686 |
[8] |
Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo J M, Guo Y. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell, 2007, 19: 1415-1431.
doi: 10.1105/tpc.106.042291 |
[9] |
Pandey G K, Kanwar P, Singh A, Steinhorst L, Pandey A, Yadav A K, Tokas I, Sanyal S K, Kim B G, Lee S C, Cheong Y H, Kudla J, Luan S. Calcineurin B-like protein-interacting protein kinase CIPK21 regulates osmotic and salt stress responses in Arabidopsis. Plant Physiol, 2015, 169: 780-792.
doi: 10.1104/pp.15.00623 |
[10] |
Cheong Y H, Pandey G K, Grant J J, Batistic O, Li L, Kim B G, Lee S C, Kudla J, Luan S. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J, 2007, 52: 223-239.
doi: 10.1111/j.1365-313X.2007.03236.x pmid: 17922773 |
[11] |
D’Angelo C, Weinl S, Batistic O, Pandey G K, Cheong Y H, Schültke S, Albrecht V, Ehlert B, Schulz B, Harter K, Luan S, Bock R, Kudla J. Alternative complex formation of the Ca2+- regulated protein kinase CIPK1 controls abscisic acid dependent and independent stress responses in Arabidopsis. Plant J, 2006, 48: 857-872.
doi: 10.1111/tpj.2006.48.issue-6 |
[12] |
Yin X, Xia Y, Xie Q, Cao Y, Wang Z, Hao G, Song J, Zhou Y, Jiang X. The protein kinase complex CBL10-CIPK8-SOS1 functions in Arabidopsis to regulate salt tolerance. J Exp Bot, 2020, 71: 1801-1814.
doi: 10.1093/jxb/erz549 |
[13] |
Yasuda S, Aoyama S, Hasegawa Y, Sato T, Yamaguchi J. Arabidopsis CBL-interacting protein kinases regulate carbon/nitrogen- nutrient response by phosphorylating ubiquitin ligase ATL31 . Mol Plant, 2017, 10: 605-618.
doi: 10.1016/j.molp.2017.01.005 |
[14] |
Xiang Y, Huang Y, Xiong L. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol, 2007, 144: 1416-1428.
doi: 10.1104/pp.107.101295 pmid: 17535819 |
[15] |
M , X , Gai W X, Li Y, Yu Y N, Ali M, Gong Z H. The CBL-interacting protein kinase CaCIPK13 positively regulates defense mechanisms against cold stress in pepper. J Exp Bot, 2022, 73: 1655-1667.
doi: 10.1093/jxb/erab505 |
[16] |
Lu L, Chen X, Zhu L, Li M, Zhang J, Yang X, Wang P, Lu Y, Cheng T, Shi J, Yi Y, Chen J. NtCIPK9: a calcineurin B-like protein-interacting protein kinase from the halophyte Nitraria tangutorum, enhances Arabidopsis salt tolerance. Front Plant Sci, 2020, 11: 1112.
doi: 10.3389/fpls.2020.01112 pmid: 32973820 |
[17] |
Chen L, Ren F, Zhou L, Wang Q Q, Zhong H, Li X B. The Brassica napus calcineurin B-like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signaling. J Exp Bot, 2012, 63: 6211-6222.
doi: 10.1093/jxb/ers273 |
[18] |
Cui X Y, Du Y T, Fu J D, Yu T F, Wang C T, Chen M, Chen J, Ma Y Z, Xu Z S. Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC Plant Biol, 2018, 18: 93.
doi: 10.1186/s12870-018-1306-5 |
[19] |
Ma X, Li Y, Gai W X, Li C, Gong Z H. The CaCIPK3 gene positively regulates drought tolerance in pepper. Hortic Res, 2021, 8: 216.
doi: 10.1038/s41438-021-00651-7 |
[20] |
Lu L, Chen X, Wang P, Lu Y, Zhang J, Yang X, Cheng T, Shi J, Chen J. CIPK11: a calcineurin B-like protein-interacting protein kinase from Nitraria tangutorum, confers tolerance to salt and drought in Arabidopsis. BMC Plant Biol, 2021, 21: 123.
doi: 10.1186/s12870-021-02878-x pmid: 33648456 |
[21] |
Li R, Zhang J, Wu G, Wang H, Chen Y, Wei J. HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Plant Cell Environ, 2012, 35: 1582-1600.
doi: 10.1111/pce.2012.35.issue-9 |
[22] |
Wang Y, Li T, John S J, Chen M, Chang J, Yang G, He G. A CBL-interacting protein kinase TaCIPK27 confers drought tolerance and exogenous ABA sensitivity in transgenic Arabidopsis. Plant Physiol Biochem, 2018, 123: 103-113.
doi: 10.1016/j.plaphy.2017.11.019 |
[23] |
Xu M, Li H, Liu Z N, Wang X H, Xu P, Dai S J, Cao X, Cui X Y. The soybean CBL-interacting protein kinase, GmCIPK2, positively regulates drought tolerance and ABA signaling. Plant Physiol Biochem, 2021, 167: 980-989.
doi: 10.1016/j.plaphy.2021.09.026 |
[24] |
Wang F, Chen H W, Li Q T, Wei W, Li W, Zhang W K, Ma B, Bi Y D, Lai Y C, Liu X L, Man W Q, Zhang J S, Chen S Y. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. Plant J, 2015, 83: 224-236.
doi: 10.1111/tpj.12879 |
[25] |
Yu T F, Liu Y, Fu J D, Ma J, Fang Z W, Chen J, Zheng L, Lu Z W, Zhou Y B, Chen M, Xu Z S, Ma Y Z. The NF-Y-PYR module integrates the abscisic acid signal pathway to regulate plant stress tolerance. Plant Biotechnol J, 2021, 19: 2589-2605.
doi: 10.1111/pbi.v19.12 |
[26] |
Deng X, Hu W, Wei S, Zhou S, Zhang F, Han J, Chen L, Li Y, Feng J, Fang B, Luo Q, Li S, Liu Y, Yang G, He G. TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS One, 2013, 8: e69881.
doi: 10.1371/journal.pone.0069881 |
[27] |
Sun T, Wang Y, Wang M, Li T, Zhou Y, Wang X, Wei S, He G, Yang G. Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L). BMC Plant Biol, 2015, 15: 269.
doi: 10.1186/s12870-015-0657-4 |
[28] |
Zhu K, Chen F, Liu J, Chen X, He T, Cheng Z M. Evolution of an intron-poor cluster of the CIPK gene family and expression in response to drought stress in soybean. Sci Rep, 2016, 6: 28225.
doi: 10.1038/srep28225 pmid: 27311690 |
[29] |
Luo Q, Wei Q, Wang R, Zhang Y, Zhang F, He Y, Zhou S, Feng J, Yang G, He G. BdCIPK31, a calcineurin B-like protein- interacting protein kinase, regulates plant response to drought and salt stress. Front Plant Sci, 2017, 8: 1184.
doi: 10.3389/fpls.2017.01184 |
[30] |
Chen X, Huang Q, Zhang F, Wang B, Wang J, Zheng J. ZmCIPK21, a maize CBL-interacting kinase, enhances salt stress tolerance in Arabidopsis thaliana. Int J Mol Sci, 2014, 15: 14819-14834.
doi: 10.3390/ijms150814819 |
[31] |
Su Y, Guo A, Huang Y, Wang Y, Hua J. GhCIPK6a increases salt tolerance in transgenic upland cotton by involving in ROS scavenging and MAPK signaling pathways. BMC Plant Biol, 2020, 20: 421.
doi: 10.1186/s12870-020-02548-4 pmid: 32928106 |
[32] |
Li M, Chen R, Jiang Q, Sun X, Zhang H, Hu Z. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Mol Biol, 2021, 105: 333-345.
doi: 10.1007/s11103-020-01091-y pmid: 33155154 |
[33] |
Chen Y, Han Y, Kong X, Kang H, Ren Y, Wang W. Ectopic expression of wheat expansin gene TaEXPA2 improved the salt tolerance of transgenic tobacco by regulating Na+/K+ and antioxidant competence. Physiol Plant, 2017, 159: 161-177.
doi: 10.1111/ppl.2017.159.issue-2 |
[34] | Yang L, Han Y, Wu D, Yong W, Liu M, Wang S, Liu W, Lu M, Wei Y, Sun J. Salt and cadmium stress tolerance caused by overexpression of the Glycine max Na+/H+ antiporter (GmNHX1) gene in duckweed (Lemna turionifera 5511). Aquat Toxicol, 2017, 192, 127-135. |
[35] |
Qu Y, Guan R, Bose J, Henderson S W, Wege S, Qiu L, Gilliham M. Soybean CHX-type ion transport protein GmSALT3 confers leaf Na+ exclusion via a root derived mechanism, and Cl- exclusion via a shoot derived process. Plant Cell Environ, 2021, 44: 856-869.
doi: 10.1111/pce.v44.3 |
[36] |
Deng J, Yang X, Sun W, Miao Y, He L, Zhang X. The calcium sensor CBL2 and its interacting kinase CIPK6 are involved in plant sugar homeostasis via interacting with tonoplast sugar transporter TST2. Plant Physiol, 2020, 183: 236-249.
doi: 10.1104/pp.19.01368 |
[1] | LIU Ting-Xuan, GU Yong-Zhe, ZHANG Zhi-Hao, WANG Jun, SUN Jun-Ming, QIU Li-Juan. Mapping soybean protein QTLs based on high-density genetic map [J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541. |
[2] | SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150. |
[3] | WU Zong-Sheng, XU Cai-Long, LI Rui-Dong, XU Yi-Fan, SUN Shi, HAN Tian-Fu, SONG Wen-Wen, WU Cun-Xiang. Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean [J]. Acta Agronomica Sinica, 2023, 49(4): 1052-1064. |
[4] | LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844. |
[5] | YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320. |
[6] | WANG Hui, WU Zhi-Yi, ZHANG Yu-E, YU De-Yue. Transcriptional expression profiling of soybean genes under sulfur-starved conditions by RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(1): 105-118. |
[7] | LIANG Zheng, KE Mei-Yu, CHEN Zhi-Wei, CHEN Xu, GAO Zhen. Function of GmPIN2 family gene in regulating root development in soybean [J]. Acta Agronomica Sinica, 2023, 49(1): 24-35. |
[8] | BAI Zhi-Yuan, CHEN Xiang-Yang, ZHENG A-Xiang, ZHANG Li, ZOU Jun, ZHANG Da-Tong, CHEN Fu, YIN Xiao-Gang. Spatial-temporal variations for agronomic and quality characters of soybeans varieties (strains) tested in America from 1991 to 2019 [J]. Acta Agronomica Sinica, 2023, 49(1): 177-187. |
[9] | QI Yang-Yang, DOU Ru-Na, ZHAO Cai-Tong, ZHANG Zhi, LI Wen-Bin, JIANG Zhen-Feng. Analysis of key genes involved in GA pathway responding to temperature and exogenous GA related to internode development in soybean [J]. Acta Agronomica Sinica, 2023, 49(1): 62-72. |
[10] | LIU Cheng, ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin, GAI Jun-Yi. Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population [J]. Acta Agronomica Sinica, 2022, 48(8): 1884-1893. |
[11] | HUAI Yuan-Yuan, ZHANG Sheng-Rui, WU Ting-Ting, AZAM Muhammad, LI Jing, SUN Shi, HAN Tian-Fu, LI Bin, SUN Jun-Ming. Potential evaluation of molecular markers related to major nutritional quality traits in soybean breeding [J]. Acta Agronomica Sinica, 2022, 48(8): 1957-1976. |
[12] | XIA Xiu-Zhong, ZHANG Zong-Qiong, YANG Xing-Hai, ZHUANG Jie, ZENG Yu, DENG Guo-Fu, SONG Guo-Xian, HUANG Yu-Xiao, NONG Bao-Xuang, LI Dan-Ting. Genome wide association study of salt tolerance at the germination stage for core Germplasm of rice landrace in Guangxi, China [J]. Acta Agronomica Sinica, 2022, 48(8): 2007-2015. |
[13] | KE Dan-Xia, HUO Ya-Ya, LIU Yi, LI Jin-Ying, LIU Xiao-Xue. Functional analysis of GmTGA26 gene under salt stress in soybean [J]. Acta Agronomica Sinica, 2022, 48(7): 1697-1708. |
[14] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[15] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
|