Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (5): 1432-1444.doi: 10.3724/SP.J.1006.2023.24143
• RESEARCH NOTES • Previous Articles
ZHANG Xiao-Hong(), PENG Qiong, YAN Zheng()
[1] | 牛东玲, 王启基. 盐碱地治理研究进展. 土壤通报, 2002, 33: 449-455. |
Niu D L, Wang Q J. Research progress on saline-alkali field control. Chin J Soil Sci, 2002, 33: 449-455. (in Chinese with English abstract) | |
[2] | 王福琴. 甘薯对盐胁迫的生理响应及甜菜碱合成相关基因的克隆与表达. 山东大学硕士学位论文,山东济南, 2015. |
Wang F Q. Physiological Response to Salt Stress and Cloning, Expression of Betaine Biosynthesis Related Genes in Sweet Potato. MS Thesis of Shandong University, Jinan, Shandong, China, 2015. (in Chinese with English abstract) | |
[3] | 马箐, 于立峰, 孙宏丽, 唐琪, 王宝山, 杜希华. NaCl胁迫对不同甘薯品种体内离子分配的影响. 山东农业科学, 2012, 44(1): 43-46. |
Ma J, Yu L F, Sun H L, Tang Q, Wang B S, Du X H. Effect of NaCl stress on ion distribution in plants of different sweet potato varieties. Shandong Agric Sci, 2012, 44(1): 43-46. (in Chinese with English abstract) | |
[4] | 洪立洲, 邢锦城, 魏福友, 刘冲, 董静, 吴春. 滩涂地区不同种植密度下甘薯生长对盐渍土壤理化特性的影响. 湖南农业科学, 2018, (7): 52-55. |
Hong L Z, Xing J C, Wei F Y, Liu C, Dong J, Wu C. Effects of sweet potato growth on saline soil physicochemical properties under different planting densities in coastal beach. Hunan Agric Sci, 2018, (7): 52-55. (in Chinese with English abstract) | |
[5] | 王文婷, 侯夫云, 王庆美, 李爱贤, 郭钢, 张立明. 耐盐性甘薯品种的初步筛选. 山东农业科学, 2012, 44(11): 35-37. |
Wang W T, Hou F Y, Wang Q M, Li A X, Guo G, Zhang L M. Initial screening of sweet potato varieties with salt tolerance. Shandong Agric Sci, 2012, 44(11): 35-37 (in Chinese with English abstract). | |
[6] | 过晓明, 李强, 王欣, 马代夫. 盐胁迫对甘薯幼苗生理特性的影响. 江苏农业科学, 2011, 39(3): 107-109. |
Guo X M, Li Q, Wang X, Ma D F. Effects of salt stress on physiological characteristics of sweet potato seedlings. Jiangsu Agric Sci, 2011, 39(3): 107-109. (in Chinese) | |
[7] | 霍恺森, 成小威, 曹清河, 唐君, 朱国鹏, 陈艳丽. 甘薯近缘野生种马鞍藤对盐胁迫的生理生化响应特征. 江苏农业科学, 2019, 47(3): 94-98. |
Huo K S, Cheng X W, Cao Q H, Tang J, Zhu G P, Chen Y L. Physiological and biochemical responses of wild species of sweet potato [Ipomoea pes-caprae (L.) R. Brown] to salt stress. Jiangsu Agric Sci, 2019, 47(3): 94-98. (in Chinese) | |
[8] |
Wang L J, He S Z, Zhai H, Liu D G, Wang Y N, Liu Q C. Molecular cloning and functional characterization of a salt tolerance-associated gene IbNFU1 from sweet potato. J Integr Agric, 2013, 12: 27-35.
doi: 10.1016/S2095-3119(13)60202-6 |
[9] | 余静, 孟小庆, 娜菲莎·艾买提江, 李格, 张颖, 李淑清, 朱明库. 甘薯盐胁迫响应基因IbNAC14的克隆、生物信息学及表达模式分析. 四川农业大学学报, 2019, 37: 828-835. |
Yu J, Meng X Q, Amatjian N, Li G, Li G, Zhang Y, Li S Q, Zhu M K. Cloning, bioinformatics and expression analysis of salt-responsive IbNAC14 gene from sweet potato (Ipomoea batatas). J Sichuan Agric Univ, 2019, 37: 828-835. (in Chinese with English abstract) | |
[10] | 李格, 孟小庆, 李宗芸, 朱明库. 甘薯盐胁迫响应基因IbMYB3的表达特征及生物信息学分析. 植物学报, 2020, 55: 41-51. |
Li G, Meng X Q, Li Z Y, Zhu M K.Expression patterns and bioinformatic analyses of salt stress responsive gene IbMYB3 in Ipomoea batatas. Bull Bot, 2020, 55: 41-51. (in Chinese with English abstract) | |
[11] | 于聘飞, 王英, 葛芹玉. 高通量DNA测序技术及其应用进展. 南京晓庄学院学报, 2010, (3): 1-5. |
Yu P F, Wang Y, Ge Q Y. High-fluxed DNA sequencing technology and its application development. J Nanjing Xiaozhuang Univ, 2010, (3): 1-5. (in Chinese with English abstract) | |
[12] |
Martin J A, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet, 2011, 12: 671-682.
doi: 10.1038/nrg3068 pmid: 21897427 |
[13] | 颜朗, 魏昌赫, 张义正. 甘薯‘徐薯18’转录组分析. 植物生理学报, 2017, 53: 772-780. |
Yan L, Wei C H, Zhang Y Z. Transcriptomic analyses in sweetpotato [Ipomoea batatas (L.) Lam. cv. ‘Xushu 18’]. Plant Physiol J, 2017, 53: 772-780. (in Chinese with English abstract)
doi: 10.1104/pp.53.5.772 |
|
[14] |
Wang Z Y, Fang B P, Chen J Y, Zhang X J, Luo Z X, Huang L F, Chen X L, Li Y J. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). BMC Genomics, 2010, 11: 726.
doi: 10.1186/1471-2164-11-726 |
[15] | Tao X, Gu Y H, Wang H Y, Zheng W, Xiao L, Zhao C W, Zhang Y Z. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam.]. PLoS One, 2012, 7: 36234. |
[16] | Tao X, Gu Y H, Jiang Y S, Zhang Y Z, Wang H Y. Transcriptome analysis to identify putative floral-specific genes and flowering regulatory-related genes of sweet potato. J Agric Chem Soc Jpn, 2013, 77: 2169-2174. |
[17] | Li R J, Zhai H, Kang C, Liu D G, He S Z, Liu Q C. De novo transcriptome sequencing of the orange-fleshed sweet potato and analysis of differentially expressed genes related to carotenoid biosynthesis. Int J Genomics, 2015, 2015: 843802. |
[18] |
Luo Y, Reid R, Freese D, Li C B, Watkins J, Shi H Z, Zhang H Y, Loraine A, Song B H. Salt tolerance response revealed by RNA-Seq in a diploid halophytic wild relative of sweet potato. Sci Rep, 2017, 7: 9624.
doi: 10.1038/s41598-017-09241-x pmid: 28852001 |
[19] |
Zhu H, Zhou Y Y, Zhai H, He S Z, Zhao N, Liu Q C. Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweet potato. J Integr Agric, 2019, 18: 9-23.
doi: 10.1016/S2095-3119(18)61934-3 |
[20] |
Arisha M H, Aboelnasr H, Ahmad M Q, Liu Y J, Tang W, Gao R F, Yan H, Kou M, Wang X, Zhang Y G, Li Q. Transcriptome sequencing and whole genome expression profiling of hexaploid sweet potato under salt stress. BMC Genomics, 2020, 21: 197.
doi: 10.1186/s12864-020-6524-1 |
[21] |
Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q D, Chen Z H, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma F D, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol, 2011, 29: 644-652.
doi: 10.1038/nbt.1883 pmid: 21572440 |
[22] | Altschul S F, Madden T L, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25: 3389-3402. |
[23] |
Xie C, Mao X, Huang J, Wu J, Dong S, Lei K, Ge G, Li C Y, Wei L. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res, 2011, 39: W316-W322.
doi: 10.1093/nar/gkr483 |
[24] |
Eddy S R. HMMER: profile HMMs for protein sequence analysis. Bioinformatics, 1998, 14: 755-763.
doi: 10.1093/bioinformatics/14.9.755 pmid: 9918945 |
[25] |
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol, 2010, 11: R106.
doi: 10.1186/gb-2010-11-10-r106 |
[26] |
Firon N, Labonte D, Villordon A, Kfir Y, Solis J, Lapis E, Perlman T S, Doron-Faigenboim A, Hetzroni A, Althan L. Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics, 2013, 14: 460-460.
doi: 10.1186/1471-2164-14-460 pmid: 23834507 |
[27] | 勾晓婉, 侯文倩, 平艳飞, 韩永华, 李宗芸. 甘薯及其野生近缘种的基因组测序研究进展. 江苏师范大学学报(自然科学版), 2020, 38(2): 52-54. |
Gou X W, Hou W Q, Ping Y F, Han Y H, Li Z Y. Research advance in genomic sequencing of sweetpotato and its wild relatives. J Jiangsu Norm Univ (Nat Sci Edn), 2020, 38(2): 52-54. (in Chinese with English abstract) | |
[28] |
张飞, 王艳秋, 朱凯, 张志鹏, 朱振兴, 卢峰, 邹剑秋. 不同耐盐性高粱在盐逆境下的比较转录组分析. 中国农业科学, 2019, 52: 4002-4015.
doi: 10.3864/j.issn.0578-1752.2019.22.006 |
Zhang F, Wang Y Q, Zhu K, Zhang Z P, Zhu Z X, Lu F, Zou J Q. Comparative transcriptome analysis of different salt tolerance sorghum (Sorghum bicolor L. Moench) under salt stress. Sci Agric Sin, 2019, 52: 4002-4015. (in Chinese with English abstract) | |
[29] | 来亚鹏, 刘刚, 王娟. 嗜热真菌β-葡萄糖苷酶基因克隆表达与调控的研究进展. 纤维素科学与技术, 2017, 25(2): 69-76. |
Lai Y P, Liu G, Wang J. Advances on gene cloning, expression and regulation of β-glucosidase from thermophilic fungi. J Cellul Sci Technol, 2017, 25(2): 69-76 (in Chinese with English abstract). | |
[30] | 谢欠影, 曹晟阳, 赵晨阳, 伊凯, 戴峰, 秦会发, 秦玉雪, 方蕾. 翅碱蓬响应高盐胁迫的分子机制研究. 大连海洋大学学报, 2019, 34(2): 160-167. |
Xie Q Y, Cao S Y, Zhao C Y, Yi K, Dai F, Qin H F, Qin Y X, Fang L. Study on the molecular mechanisms of Suaeda heteroptera in response to high salt stress. J Dalian Ocean Univ, 2019, 34(2): 160-167. (in Chinese with English abstract) | |
[31] | 杨秀, 许艳超, 杨芳芳, 蔡小彦, 侯宇清, 王玉红, 王星星, 王坤波, 刘方, 周忠丽. 棉花CML基因家族成员鉴定与功能分析. 棉花学报, 2019, 31: 307-318. |
Yang X, Xu Y C, Yang F F, Cai X Y, Hou Y Q, Wang Y H, Wang X X, Wang K B, Liu F, Zhou Z L. Identification and functional analysis of CML gene family in cotton. Cotton Sci, 2019, 31: 307-318. (in Chinese with English abstract) | |
[32] | Xu G Y, Rocha P, Wang M L, Xu M L, Cui Y C, Li L Y, Zhu Y X, Xia X J.A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta, 2011, 234: 47-59. |
[33] |
Liao Y, Zou H F, Wang H W, Zhang W K, Ma B, Zhang J S, Chen S Y. Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res, 2008, 18: 1047-1060.
doi: 10.1038/cr.2008.280 |
[34] |
Zhang G, Ming C, Li L, Xu Z S, Chen X P, Guo J M, Ma Y J. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot, 2009, 60: 3781-3796.
doi: 10.1093/jxb/erp214 |
[35] |
Seok H Y, Nguyen L V, Park H Y, Tarte V N, Ha J, Lee S Y, Moon Y H. Arabidopsis non-TZF gene AtC3H17 functions as a positive regulator in salt stress response. Biochem Biophys Res Commun, 2018, 498: 954-959.
doi: 10.1016/j.bbrc.2018.03.088 |
[36] | 蔡荣号, 李尉, 陈浩伟, 罗国伟, 戴浩然, 宋文雷, 伯晨. 异源表达玉米ZmWRKY114基因增强拟南芥对盐胁迫的敏感性. 安徽农业大学学报, 2019, 46(6): 145-152. |
Cai R H, Li W, Chen H W, Luo G W, Dai H R, Song W L, Bo C. The maize ZmWRKY114 gene negatively regulates salt stress tolerance in transgenic Arabidopsis. J Anhui Agric Univ, 2019, 46(6): 145-152. (in Chinese with English abstract) | |
[37] |
Liu Q L, Xu K D, Zhao L J, Pan Y Z, Jiang B B, Zhang H Q, Liu G L. Overexpression of a novel chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco. Biotechnol Lett, 2011, 33: 2073-2082.
doi: 10.1007/s10529-011-0659-8 |
[38] | 苏莹, 甄军波, 张曦, 王玉美, 华金平. 陆地棉转录因子基因GhC2H2的克隆与功能分析. 棉花学报, 2016, 28: 555-564. |
Su Y, Zhen J B, Zhang X, Wang Y M, Hua J P. Cloning and functional analysis of a transcription factor gene, GhC2H2, in upland cotton (Gossypium hirsutum L.). Cotton Sci, 2016, 28: 555-564. (in Chinese with English abstract) | |
[39] | Jiang H Y, Fan X F, Wen H F, Han C, Teng W J, Teng K, Yin S X. Functional characterization of Zoysia japonica ZjNAC3 gene in response to salt stress. Pratac Sci, 2021, 38: 1706-1714. |
[40] |
Wang L L, Hu Z L, Zhu M Q, Zhu Z G, Hu J T, Qanmber G, Chen G P. The abiotic stress-responsive nac transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.). Plant Cell Tissue Organ Cult, 2017, 129: 161-174.
doi: 10.1007/s11240-017-1167-x |
[41] |
Huang D B, Wang S G, Zhang B C, Shang-Guan K K, Shi Y Y, Zhang D M, Liu X L, Wu K, Xu Z P, Fu X D, Zhou Y H. A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice. Plant Cell, 2015, 27: 1681-1696.
doi: 10.1105/tpc.15.00015 |
[42] | 康忱, 赵雪芳, 王鹏, 李亚栋, 田哲娟, 吴志明. 黄瓜纤维素合成酶CESA家族基因鉴定及非生物胁迫响应分析. 中国蔬菜, 2022, (3): 29-41. |
Kang C, Zhao X F, Wang P, Li Y D, Tian Z J, Wu Z M. Identification and abiotic stress response analysis of CESA family genes in cucumber (Cucumis sativus L.). China Veget, 2022, (3): 29-41. (in Chinese with English abstract) | |
[43] |
Han D G, Du M, Zhou Z Y, Wang S, Li T M, Han J X, Xu T L, Yang G H. An NAC transcription factor gene from Malus baccata, MbNAC29, increases cold and high salinity tolerance in Arabidopsis In Vitro Cell Dev Biol: Plant, 2020, 56: 588-599.
doi: 10.1007/s11627-020-10105-9 |
[44] | 覃利萍. 刚毛柽柳AP2ERF转录因子ThCRF1响应盐胁迫的调控机理研究. 新疆大学博士学位论文,新疆乌鲁木齐, 2018. |
Qin L P. Study on the Regulatory Mechanism of an AP2/ERF Transcription Factor, ThCRF1, in Response to Salt Stress in Tamarix hispida . PhD Dissertation of Xinjiang University, Urumqi, Xinjiang, China, 2018 (in Chinese with English abstract). | |
[45] |
Cheng M C, Liao P M, Kuo W W, Lin T P. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress- responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol, 2013, 162: 1566-1582.
doi: 10.1104/pp.113.221911 |
[46] |
Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell, 2001, 13: 1959-1968.
doi: 10.1105/tpc.010127 pmid: 11487705 |
[47] |
Dong W, Ai X H, Xu F, Quan T Y, Liu S W, Xia G M. Isolation and characterization of a bread wheat salinity responsive ERF transcription factor. Gene, 2012, 511: 38-45.
doi: 10.1016/j.gene.2012.09.039 pmid: 23000066 |
[48] |
Fujimoto S Y, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell, 2000, 12: 393-404.
doi: 10.1105/tpc.12.3.393 pmid: 10715325 |
[49] |
Yang Z, Tian L N, Latoszek-Green M, Brown D, Wu K Q. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol, 2005, 58: 585-596.
doi: 10.1007/s11103-005-7294-5 |
[1] | MEI Yu-Qin, LIU Yi, WANG Chong, LEI Jian, ZHU Guo-Peng, YANG Xin-Sun. Genome-wide identification and expression analysis of PHB gene family in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(6): 1715-1725. |
[2] | TANG Wen-Qiang, ZHANG Wen-Long, ZHU Xiao-Qiao, DONG Bi-Zheng, LI Yong-Cheng, YANG Nan, ZHANG Yao, WANG Yun-Yue, HAN Guang-Yu. Effects of diverse mixture intercropping on the structure and function of bacterial communities in rice rhizosphere [J]. Acta Agronomica Sinica, 2023, 49(4): 1111-1121. |
[3] | ZHANG Wen-Xuan, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 321-331. |
[4] | XIAO Jian, WEI Xing-Xuan, YANG Shang-Dong, LU Wen, TAN Hong-Wei. Effects of intercropping with watermelons on cane yields, soil physicochemical properties and micro-ecology in rhizospheres of sugarcanes [J]. Acta Agronomica Sinica, 2023, 49(2): 526-538. |
[5] | DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238. |
[6] | WU Xu-Li, WU Zheng-Dan, WAN Chuan-Fang, DU Ye, GAO Yan, LI Ze-Xuan, WANG Zhi-Qian, TANG Dao-Bin, WANG Ji-Chun, ZHANG Kai. Functional identification of sucrose transporter protein IbSWEET15 in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(1): 129-139. |
[7] | ZHANG Tian-Yu, WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng. Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(8): 1977-1995. |
[8] | XIE Li-Ming, JIANG Zhong-Yu, LIU Hong-Juan, HAN Jun-Jie, LIU Ben-Kui, WANG Xiao-Lu, SHI Chun-Yu. Suitable soil moisture promotes sugar supply and tuberization in sweet potato at root branching stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2080-2087. |
[9] | GUO Jia-Xin, LU Xiao-Yu, TAO Yi-Fan, GUO Hui-Juan, MIN Wei. Analysis of metabolites and pathways in cotton under salt and alkali stresses [J]. Acta Agronomica Sinica, 2022, 48(8): 2100-2114. |
[10] | LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600. |
[11] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[12] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[13] | XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234. |
[14] | YUE Man-Fang, ZHANG Chun, ZHENG Deng-Yu, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmbHLH91 to abiotic stress [J]. Acta Agronomica Sinica, 2022, 48(12): 3004-3017. |
[15] | YANG Ya-Jie, LI Yu-Ying, SHEN Zhuang-Zhuang, CHEN Tian, RONG Er-Hua, WU Yu-Xiang. Differential expressed analysis by transcriptome sequencing in leaves of different ploidy Gossypium herbaceum [J]. Acta Agronomica Sinica, 2022, 48(11): 2733-2748. |
|