Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (5): 1432-1444.doi: 10.3724/SP.J.1006.2023.24143

• RESEARCH NOTES • Previous Articles    

Transcriptome sequencing analysis of different sweet potato varieties under salt stress

ZHANG Xiao-Hong(), PENG Qiong, YAN Zheng()   

  1. Fuzhou Institute of Agricultural Sciences, Fuzhou 350018, Fujian, China
  • Received:2022-06-16 Accepted:2022-10-11 Online:2023-05-12 Published:2022-10-17
  • Contact: *E-mail: moosey@163.com
  • Supported by:
    Guiding Project of Science and Technology Department of Fujian Province(2019N0037)

Abstract:

The objective of this study is to obtain the salt tolerant transcriptome sequence information of sweet potato, mine and identify the differentially expressed genes and their related metabolic pathways. Rongshu 819 (salt-tolerant variety) and Rongshu 910 (salt-sensitive variety) under salt treatment for 0, 3, and 6 days were conducted for the transcriptome by high-throughput sequencing. The results showed that a total of 157,252 Unigenes with an average length of 576 bp were obtained from the two varieties. The 83,264 Unigenes, accounting for 52.95% of the total Unigenes, were annotated in the 7 functional databases. NR annotation revealed that sweet potato Unigenes had the most homologous sequences in Ipomoea nil with a total of 43,620 accounting for 57.05%. The annotation of Unigenes in the KOG database is mainly concentrated in general functional prediction only (8752), signal transformation mechanisms (5067), and post translation modification, protein transformation, molecular chaperones (4471). The qRT-PCR indicated that, in Rongshu 819, the number of differentially expressed genes in 3 days and 6 days of salt treatment was 3752 and 807, respectively, which classified into 33 GO functional categories and 302 KEGG metabolic pathways. In Rongshu 910, the number of differentially expressed genes in 3 days and 6 days of salt treatment was 5554 and 7395, respectively, which classified into 50 GO functional categories and 329 KEGG metabolic pathways. The heat map was drawn based on the transcriptome data of partial differentially expressed genes. The result showed that 7 differentially expressed β-Glucosidase genes annotated into starch and sucrose metabolic pathway were up-regulated in salt-tolerant variety while down-regulated in salt-sensitive variety. Seven calmodulin-like genes annotated into Ca2+ signaling pathway were specifically expressed in two varieties, among which 2 were specifically up-regulated in salt-tolerant variety and 5 were specifically down-regulated in salt-sensitive variety. The expression heat map of differentially expressed transcription factors indicated that IbERF1 was only specifically expressed in salt-tolerant varieties, IbNAC3, IbNAC11, IbERF3, and IbERF4 were only specifically expressed in salt-sensitive varieties, while IbNAC29 was down-regulated in salt-tolerant varieties and up-regulated in salt-sensitive varieties. In conclusion, the number of Unigenes obtained from transcriptome of sweet potato under salt stress was large and the sequence information was rich. The differentially expressed genes and high abundance transcription factors may play an important role in sweet potato response to salt stress.

Key words: sweet potato, salt stress, transcriptome, high-throughput sequencing

Table 1

Assembly results of transcriptome using trinity software in sweet potato"

项目 Item 单基因簇 Unigene 转录本 Transcript
序列总数 Total sequence number 157,252 211,688
所有序列长度之和 Total sequence length (bp) 90,649,057 160,878,660
平均长度 Average length (bp) 576 759
GC碱基的数量占比 Percent GC (%) 41.12 41.14
N50长度 N50 length (bp) 1064 1646
N90长度 N90 length (bp) 243 262

Fig. 1

Length distribution of the assembled transcripts and Unigenes"

Table 2

Statistic result of Unigene annotation"

注释数据库 Anno database 总计
Total
COG GO KEGG KOG Pfam Swissprot NR
注释的Unigene数(条)
Annotated number (Unigene)
20,446 32,635 44,445 42,285 38,863 53,196 76,583 83,264

Fig. 2

NR homologous species distribution"

Fig. 3

KOG function classification"

Table 3

Statistics of the number of differential expression genes"

差异分组
DEG set
差异表达基因数量
DEG number
上调数量
Number of the up-regulated DEGs
下调数量
Number of the down-regulated DEGs
R1-1_R1-2_R1-3_vs_R2-1_R2-2_R2-3 323 206 117
R1-1_R1-2_R1-3_vs_R3-1_R3-2_R3-3 3752 1926 1826
T1-1_T1-2_T1-3_vs_T2-1_T2-2_T2-3 5554 2122 3432
T1-1_T1-2_T1-3_vs_T3-1_T3-2_T3-3 7395 3353 4042
R1-1_R1-2_R1-3_vs_T1-1_T1-2_T1-3 9352 5129 4223
R2-1_R2-2_R2-3_vs_T2-1_T2-2_T2-3 7538 3338 4200
R3-1_R3-2_R3-3_vs_T3-1_T3-2_T3-3 9903 4709 5194

Fig. 4

Gene Ontology analysis of differential expressed genes in sweet potato Abbreviations of sample names are the same as those given in Table 3. 1: metabolic process; 2: cellular process; 3: biological regulation; 4: localization; 5: response to stimulus; 6: cellular component organization or biogenesis; 7: signaling; 8: developmental process; 9: multicellular organismal process; 10: reproduction; 11: reproductive process; 12: detoxification; 13: multi-organism process; 14: growth; 15: immune system process; 16: locomotion; 17: cell killing; 18: rhythmic process; 19: nitrogen utilization; 20: cell population proliferation; 21: pigmentation; 22: carbon utilization; 23: biological adhesion; 24: cell; 25: cell part; 26: membrane; 27: organelle; 28: membrane part; 29: organelle part; 30: protein-containing complex; 31: membrane-enclosed lumen; 32: extracellular region; 33: cell junction; 34: supramolecular complex; 35: virion; 36: virion part; 37: Nucleoid; 38: extracellular region part; 39: catalytic activity; 40: binding; 41: transporter activity; 42: structural molecule activity; 43: transcription regulator activity; 44: molecular function regulator; 45: translation regulator activity; 46: antioxidant activity; 47: molecular transducer activity; 48: small molecule sensor activity; 49: nutrient reservoir activity; 50: molecular carrier activity; 51: protein tag; 52: cargo receptor activity; 53: protein folding chaperone; 54: cargo adaptor activity."

Fig. 5

KEGG analysis of differential expressed genes in sweet potato Abbreviations of sample names are the same as those given in Table 3."

Fig. 6

Relative expression heat map of partial differentially expressed genes in sweet potato Abbreviations of sample names are the same as those given in Table 3."

Table 4

Statistics of the number of differential expression transcription factors"

转录因子
Transcription factor
数量 Number
R1-1_R1-2_R1-3_vs_R2-1_R2-2_R2-3 R1-1_R1-2_R1-3_vs_R3-1_R3-2_R3-3 T1-1_T1-2_T1-3_vs_T2-1_
T2-2_T2-3
T1-1_T1-2_T1-3_vs_T3-1_
T3-2_T3-3
AP2/ERF 3 88 152 182
B3 5 63 114 131
bHLH 3 49 111 138
bZIP 3 39 51 76
C2C2 4 49 78 78
C2H2 6 75 96 126
C3H 14 97 128 166
GNAT 5 62 97 144
GRAS 6 32 73 92
HB 6 60 98 108
MYB 9 131 177 244
mTERF 12 55 79 99
NAC 12 69 117 133
SNF2 5 48 54 61
WRKY 8 38 113 149
其他 Other 65 675 1139 1376
总计 Total 166 1630 2677 3303

Fig. 7

Relative expression heat map of partial differentially expressed transcription factors in sweet potato Abbreviations of sample names are the same as those given in Table 3."

[1] 牛东玲, 王启基. 盐碱地治理研究进展. 土壤通报, 2002, 33: 449-455.
Niu D L, Wang Q J. Research progress on saline-alkali field control. Chin J Soil Sci, 2002, 33: 449-455. (in Chinese with English abstract)
[2] 王福琴. 甘薯对盐胁迫的生理响应及甜菜碱合成相关基因的克隆与表达. 山东大学硕士学位论文,山东济南, 2015.
Wang F Q. Physiological Response to Salt Stress and Cloning, Expression of Betaine Biosynthesis Related Genes in Sweet Potato. MS Thesis of Shandong University, Jinan, Shandong, China, 2015. (in Chinese with English abstract)
[3] 马箐, 于立峰, 孙宏丽, 唐琪, 王宝山, 杜希华. NaCl胁迫对不同甘薯品种体内离子分配的影响. 山东农业科学, 2012, 44(1): 43-46.
Ma J, Yu L F, Sun H L, Tang Q, Wang B S, Du X H. Effect of NaCl stress on ion distribution in plants of different sweet potato varieties. Shandong Agric Sci, 2012, 44(1): 43-46. (in Chinese with English abstract)
[4] 洪立洲, 邢锦城, 魏福友, 刘冲, 董静, 吴春. 滩涂地区不同种植密度下甘薯生长对盐渍土壤理化特性的影响. 湖南农业科学, 2018, (7): 52-55.
Hong L Z, Xing J C, Wei F Y, Liu C, Dong J, Wu C. Effects of sweet potato growth on saline soil physicochemical properties under different planting densities in coastal beach. Hunan Agric Sci, 2018, (7): 52-55. (in Chinese with English abstract)
[5] 王文婷, 侯夫云, 王庆美, 李爱贤, 郭钢, 张立明. 耐盐性甘薯品种的初步筛选. 山东农业科学, 2012, 44(11): 35-37.
Wang W T, Hou F Y, Wang Q M, Li A X, Guo G, Zhang L M. Initial screening of sweet potato varieties with salt tolerance. Shandong Agric Sci, 2012, 44(11): 35-37 (in Chinese with English abstract).
[6] 过晓明, 李强, 王欣, 马代夫. 盐胁迫对甘薯幼苗生理特性的影响. 江苏农业科学, 2011, 39(3): 107-109.
Guo X M, Li Q, Wang X, Ma D F. Effects of salt stress on physiological characteristics of sweet potato seedlings. Jiangsu Agric Sci, 2011, 39(3): 107-109. (in Chinese)
[7] 霍恺森, 成小威, 曹清河, 唐君, 朱国鹏, 陈艳丽. 甘薯近缘野生种马鞍藤对盐胁迫的生理生化响应特征. 江苏农业科学, 2019, 47(3): 94-98.
Huo K S, Cheng X W, Cao Q H, Tang J, Zhu G P, Chen Y L. Physiological and biochemical responses of wild species of sweet potato [Ipomoea pes-caprae (L.) R. Brown] to salt stress. Jiangsu Agric Sci, 2019, 47(3): 94-98. (in Chinese)
[8] Wang L J, He S Z, Zhai H, Liu D G, Wang Y N, Liu Q C. Molecular cloning and functional characterization of a salt tolerance-associated gene IbNFU1 from sweet potato. J Integr Agric, 2013, 12: 27-35.
doi: 10.1016/S2095-3119(13)60202-6
[9] 余静, 孟小庆, 娜菲莎·艾买提江, 李格, 张颖, 李淑清, 朱明库. 甘薯盐胁迫响应基因IbNAC14的克隆、生物信息学及表达模式分析. 四川农业大学学报, 2019, 37: 828-835.
Yu J, Meng X Q, Amatjian N, Li G, Li G, Zhang Y, Li S Q, Zhu M K. Cloning, bioinformatics and expression analysis of salt-responsive IbNAC14 gene from sweet potato (Ipomoea batatas). J Sichuan Agric Univ, 2019, 37: 828-835. (in Chinese with English abstract)
[10] 李格, 孟小庆, 李宗芸, 朱明库. 甘薯盐胁迫响应基因IbMYB3的表达特征及生物信息学分析. 植物学报, 2020, 55: 41-51.
Li G, Meng X Q, Li Z Y, Zhu M K.Expression patterns and bioinformatic analyses of salt stress responsive gene IbMYB3 in Ipomoea batatas. Bull Bot, 2020, 55: 41-51. (in Chinese with English abstract)
[11] 于聘飞, 王英, 葛芹玉. 高通量DNA测序技术及其应用进展. 南京晓庄学院学报, 2010, (3): 1-5.
Yu P F, Wang Y, Ge Q Y. High-fluxed DNA sequencing technology and its application development. J Nanjing Xiaozhuang Univ, 2010, (3): 1-5. (in Chinese with English abstract)
[12] Martin J A, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet, 2011, 12: 671-682.
doi: 10.1038/nrg3068 pmid: 21897427
[13] 颜朗, 魏昌赫, 张义正. 甘薯‘徐薯18’转录组分析. 植物生理学报, 2017, 53: 772-780.
Yan L, Wei C H, Zhang Y Z. Transcriptomic analyses in sweetpotato [Ipomoea batatas (L.) Lam. cv. ‘Xushu 18’]. Plant Physiol J, 2017, 53: 772-780. (in Chinese with English abstract)
doi: 10.1104/pp.53.5.772
[14] Wang Z Y, Fang B P, Chen J Y, Zhang X J, Luo Z X, Huang L F, Chen X L, Li Y J. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweet potato (Ipomoea batatas). BMC Genomics, 2010, 11: 726.
doi: 10.1186/1471-2164-11-726
[15] Tao X, Gu Y H, Wang H Y, Zheng W, Xiao L, Zhao C W, Zhang Y Z. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam.]. PLoS One, 2012, 7: 36234.
[16] Tao X, Gu Y H, Jiang Y S, Zhang Y Z, Wang H Y. Transcriptome analysis to identify putative floral-specific genes and flowering regulatory-related genes of sweet potato. J Agric Chem Soc Jpn, 2013, 77: 2169-2174.
[17] Li R J, Zhai H, Kang C, Liu D G, He S Z, Liu Q C. De novo transcriptome sequencing of the orange-fleshed sweet potato and analysis of differentially expressed genes related to carotenoid biosynthesis. Int J Genomics, 2015, 2015: 843802.
[18] Luo Y, Reid R, Freese D, Li C B, Watkins J, Shi H Z, Zhang H Y, Loraine A, Song B H. Salt tolerance response revealed by RNA-Seq in a diploid halophytic wild relative of sweet potato. Sci Rep, 2017, 7: 9624.
doi: 10.1038/s41598-017-09241-x pmid: 28852001
[19] Zhu H, Zhou Y Y, Zhai H, He S Z, Zhao N, Liu Q C. Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweet potato. J Integr Agric, 2019, 18: 9-23.
doi: 10.1016/S2095-3119(18)61934-3
[20] Arisha M H, Aboelnasr H, Ahmad M Q, Liu Y J, Tang W, Gao R F, Yan H, Kou M, Wang X, Zhang Y G, Li Q. Transcriptome sequencing and whole genome expression profiling of hexaploid sweet potato under salt stress. BMC Genomics, 2020, 21: 197.
doi: 10.1186/s12864-020-6524-1
[21] Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q D, Chen Z H, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma F D, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol, 2011, 29: 644-652.
doi: 10.1038/nbt.1883 pmid: 21572440
[22] Altschul S F, Madden T L, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25: 3389-3402.
[23] Xie C, Mao X, Huang J, Wu J, Dong S, Lei K, Ge G, Li C Y, Wei L. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res, 2011, 39: W316-W322.
doi: 10.1093/nar/gkr483
[24] Eddy S R. HMMER: profile HMMs for protein sequence analysis. Bioinformatics, 1998, 14: 755-763.
doi: 10.1093/bioinformatics/14.9.755 pmid: 9918945
[25] Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol, 2010, 11: R106.
doi: 10.1186/gb-2010-11-10-r106
[26] Firon N, Labonte D, Villordon A, Kfir Y, Solis J, Lapis E, Perlman T S, Doron-Faigenboim A, Hetzroni A, Althan L. Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics, 2013, 14: 460-460.
doi: 10.1186/1471-2164-14-460 pmid: 23834507
[27] 勾晓婉, 侯文倩, 平艳飞, 韩永华, 李宗芸. 甘薯及其野生近缘种的基因组测序研究进展. 江苏师范大学学报(自然科学版), 2020, 38(2): 52-54.
Gou X W, Hou W Q, Ping Y F, Han Y H, Li Z Y. Research advance in genomic sequencing of sweetpotato and its wild relatives. J Jiangsu Norm Univ (Nat Sci Edn), 2020, 38(2): 52-54. (in Chinese with English abstract)
[28] 张飞, 王艳秋, 朱凯, 张志鹏, 朱振兴, 卢峰, 邹剑秋. 不同耐盐性高粱在盐逆境下的比较转录组分析. 中国农业科学, 2019, 52: 4002-4015.
doi: 10.3864/j.issn.0578-1752.2019.22.006
Zhang F, Wang Y Q, Zhu K, Zhang Z P, Zhu Z X, Lu F, Zou J Q. Comparative transcriptome analysis of different salt tolerance sorghum (Sorghum bicolor L. Moench) under salt stress. Sci Agric Sin, 2019, 52: 4002-4015. (in Chinese with English abstract)
[29] 来亚鹏, 刘刚, 王娟. 嗜热真菌β-葡萄糖苷酶基因克隆表达与调控的研究进展. 纤维素科学与技术, 2017, 25(2): 69-76.
Lai Y P, Liu G, Wang J. Advances on gene cloning, expression and regulation of β-glucosidase from thermophilic fungi. J Cellul Sci Technol, 2017, 25(2): 69-76 (in Chinese with English abstract).
[30] 谢欠影, 曹晟阳, 赵晨阳, 伊凯, 戴峰, 秦会发, 秦玉雪, 方蕾. 翅碱蓬响应高盐胁迫的分子机制研究. 大连海洋大学学报, 2019, 34(2): 160-167.
Xie Q Y, Cao S Y, Zhao C Y, Yi K, Dai F, Qin H F, Qin Y X, Fang L. Study on the molecular mechanisms of Suaeda heteroptera in response to high salt stress. J Dalian Ocean Univ, 2019, 34(2): 160-167. (in Chinese with English abstract)
[31] 杨秀, 许艳超, 杨芳芳, 蔡小彦, 侯宇清, 王玉红, 王星星, 王坤波, 刘方, 周忠丽. 棉花CML基因家族成员鉴定与功能分析. 棉花学报, 2019, 31: 307-318.
Yang X, Xu Y C, Yang F F, Cai X Y, Hou Y Q, Wang Y H, Wang X X, Wang K B, Liu F, Zhou Z L. Identification and functional analysis of CML gene family in cotton. Cotton Sci, 2019, 31: 307-318. (in Chinese with English abstract)
[32] Xu G Y, Rocha P, Wang M L, Xu M L, Cui Y C, Li L Y, Zhu Y X, Xia X J.A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta, 2011, 234: 47-59.
[33] Liao Y, Zou H F, Wang H W, Zhang W K, Ma B, Zhang J S, Chen S Y. Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res, 2008, 18: 1047-1060.
doi: 10.1038/cr.2008.280
[34] Zhang G, Ming C, Li L, Xu Z S, Chen X P, Guo J M, Ma Y J. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot, 2009, 60: 3781-3796.
doi: 10.1093/jxb/erp214
[35] Seok H Y, Nguyen L V, Park H Y, Tarte V N, Ha J, Lee S Y, Moon Y H. Arabidopsis non-TZF gene AtC3H17 functions as a positive regulator in salt stress response. Biochem Biophys Res Commun, 2018, 498: 954-959.
doi: 10.1016/j.bbrc.2018.03.088
[36] 蔡荣号, 李尉, 陈浩伟, 罗国伟, 戴浩然, 宋文雷, 伯晨. 异源表达玉米ZmWRKY114基因增强拟南芥对盐胁迫的敏感性. 安徽农业大学学报, 2019, 46(6): 145-152.
Cai R H, Li W, Chen H W, Luo G W, Dai H R, Song W L, Bo C. The maize ZmWRKY114 gene negatively regulates salt stress tolerance in transgenic Arabidopsis. J Anhui Agric Univ, 2019, 46(6): 145-152. (in Chinese with English abstract)
[37] Liu Q L, Xu K D, Zhao L J, Pan Y Z, Jiang B B, Zhang H Q, Liu G L. Overexpression of a novel chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco. Biotechnol Lett, 2011, 33: 2073-2082.
doi: 10.1007/s10529-011-0659-8
[38] 苏莹, 甄军波, 张曦, 王玉美, 华金平. 陆地棉转录因子基因GhC2H2的克隆与功能分析. 棉花学报, 2016, 28: 555-564.
Su Y, Zhen J B, Zhang X, Wang Y M, Hua J P. Cloning and functional analysis of a transcription factor gene, GhC2H2, in upland cotton (Gossypium hirsutum L.). Cotton Sci, 2016, 28: 555-564. (in Chinese with English abstract)
[39] Jiang H Y, Fan X F, Wen H F, Han C, Teng W J, Teng K, Yin S X. Functional characterization of Zoysia japonica ZjNAC3 gene in response to salt stress. Pratac Sci, 2021, 38: 1706-1714.
[40] Wang L L, Hu Z L, Zhu M Q, Zhu Z G, Hu J T, Qanmber G, Chen G P. The abiotic stress-responsive nac transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.). Plant Cell Tissue Organ Cult, 2017, 129: 161-174.
doi: 10.1007/s11240-017-1167-x
[41] Huang D B, Wang S G, Zhang B C, Shang-Guan K K, Shi Y Y, Zhang D M, Liu X L, Wu K, Xu Z P, Fu X D, Zhou Y H. A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice. Plant Cell, 2015, 27: 1681-1696.
doi: 10.1105/tpc.15.00015
[42] 康忱, 赵雪芳, 王鹏, 李亚栋, 田哲娟, 吴志明. 黄瓜纤维素合成酶CESA家族基因鉴定及非生物胁迫响应分析. 中国蔬菜, 2022, (3): 29-41.
Kang C, Zhao X F, Wang P, Li Y D, Tian Z J, Wu Z M. Identification and abiotic stress response analysis of CESA family genes in cucumber (Cucumis sativus L.). China Veget, 2022, (3): 29-41. (in Chinese with English abstract)
[43] Han D G, Du M, Zhou Z Y, Wang S, Li T M, Han J X, Xu T L, Yang G H. An NAC transcription factor gene from Malus baccata, MbNAC29, increases cold and high salinity tolerance in Arabidopsis In Vitro Cell Dev Biol: Plant, 2020, 56: 588-599.
doi: 10.1007/s11627-020-10105-9
[44] 覃利萍. 刚毛柽柳AP2ERF转录因子ThCRF1响应盐胁迫的调控机理研究. 新疆大学博士学位论文,新疆乌鲁木齐, 2018.
Qin L P. Study on the Regulatory Mechanism of an AP2/ERF Transcription Factor, ThCRF1, in Response to Salt Stress in Tamarix hispida . PhD Dissertation of Xinjiang University, Urumqi, Xinjiang, China, 2018 (in Chinese with English abstract).
[45] Cheng M C, Liao P M, Kuo W W, Lin T P. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress- responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol, 2013, 162: 1566-1582.
doi: 10.1104/pp.113.221911
[46] Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell, 2001, 13: 1959-1968.
doi: 10.1105/tpc.010127 pmid: 11487705
[47] Dong W, Ai X H, Xu F, Quan T Y, Liu S W, Xia G M. Isolation and characterization of a bread wheat salinity responsive ERF transcription factor. Gene, 2012, 511: 38-45.
doi: 10.1016/j.gene.2012.09.039 pmid: 23000066
[48] Fujimoto S Y, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell, 2000, 12: 393-404.
doi: 10.1105/tpc.12.3.393 pmid: 10715325
[49] Yang Z, Tian L N, Latoszek-Green M, Brown D, Wu K Q. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol, 2005, 58: 585-596.
doi: 10.1007/s11103-005-7294-5
[1] MEI Yu-Qin, LIU Yi, WANG Chong, LEI Jian, ZHU Guo-Peng, YANG Xin-Sun. Genome-wide identification and expression analysis of PHB gene family in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(6): 1715-1725.
[2] TANG Wen-Qiang, ZHANG Wen-Long, ZHU Xiao-Qiao, DONG Bi-Zheng, LI Yong-Cheng, YANG Nan, ZHANG Yao, WANG Yun-Yue, HAN Guang-Yu. Effects of diverse mixture intercropping on the structure and function of bacterial communities in rice rhizosphere [J]. Acta Agronomica Sinica, 2023, 49(4): 1111-1121.
[3] ZHANG Wen-Xuan, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 321-331.
[4] XIAO Jian, WEI Xing-Xuan, YANG Shang-Dong, LU Wen, TAN Hong-Wei. Effects of intercropping with watermelons on cane yields, soil physicochemical properties and micro-ecology in rhizospheres of sugarcanes [J]. Acta Agronomica Sinica, 2023, 49(2): 526-538.
[5] DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238.
[6] WU Xu-Li, WU Zheng-Dan, WAN Chuan-Fang, DU Ye, GAO Yan, LI Ze-Xuan, WANG Zhi-Qian, TANG Dao-Bin, WANG Ji-Chun, ZHANG Kai. Functional identification of sucrose transporter protein IbSWEET15 in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(1): 129-139.
[7] ZHANG Tian-Yu, WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng. Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(8): 1977-1995.
[8] XIE Li-Ming, JIANG Zhong-Yu, LIU Hong-Juan, HAN Jun-Jie, LIU Ben-Kui, WANG Xiao-Lu, SHI Chun-Yu. Suitable soil moisture promotes sugar supply and tuberization in sweet potato at root branching stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2080-2087.
[9] GUO Jia-Xin, LU Xiao-Yu, TAO Yi-Fan, GUO Hui-Juan, MIN Wei. Analysis of metabolites and pathways in cotton under salt and alkali stresses [J]. Acta Agronomica Sinica, 2022, 48(8): 2100-2114.
[10] LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600.
[11] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[12] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[13] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[14] YUE Man-Fang, ZHANG Chun, ZHENG Deng-Yu, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmbHLH91 to abiotic stress [J]. Acta Agronomica Sinica, 2022, 48(12): 3004-3017.
[15] YANG Ya-Jie, LI Yu-Ying, SHEN Zhuang-Zhuang, CHEN Tian, RONG Er-Hua, WU Yu-Xiang. Differential expressed analysis by transcriptome sequencing in leaves of different ploidy Gossypium herbaceum [J]. Acta Agronomica Sinica, 2022, 48(11): 2733-2748.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .