Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (5): 1249-1261.doi: 10.3724/SP.J.1006.2023.24122

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction of core collection of sweetpotato based on phenotypic traits and SSR markers

CHEN Yi-Hang1,2(), TANG Chao-Chen1, ZHANG Xiong-Jian1, YAO Zhu-Fang1, JIANG Bing-Zhi1, WANG Zhang-Ying1,*()   

  1. 1Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou 510640, Guangdong, China
    2College of Grassland Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2022-05-21 Accepted:2022-09-05 Online:2023-05-12 Published:2022-09-22
  • Contact: *E-mail: wangzhangying@gdaas.cn
  • Supported by:
    National Key Research and Development Program of China(2019YFD1000700);National Key Research and Development Program of China(2019YFD1000701);China Agriculture Research System of MOF and MARA, and the Guangdong Modern Agricultural Industry Technology System(2021KJ111)

Abstract:

To better preserve, study, and utilize sweet potato collection resources, 1091 sweetpotato germplasms preserved in the National Sweetpotato Germplasm Nursery (Guangzhou) were used as the materials in this study. Euclidean distance and Nei’s distance were used for NJ cluster grouping, respectively, and random sampling was conducted within the group to construct the core collection. Mean, variance, Shannon’s diversity index, coefficient of variation, and other indicators were used to evaluate the representativeness of the core collection based on phenotypic traits data, and effective alleles, Nei’s genetic diversity index, Shannon’s diversity index, and other indicators were used to evaluate the representativeness of the core collection based on SSR markers data. The results showed that the constructed sweetpotato core collection contained 289 materials, accounting for 26.49% of the entire collection. At P < 0.05, there was no significant difference in the related indicators of phenotypic traits and SSR molecular markers between the core collection and the entire collection, and the phenotypic frequency distribution of the two germplasm was basically the same. The principal component analysis revealed that the core collection had similar genetic diversity and population structure to the entire collection. In conclusion, the established core collection of sweetpotato well represented the entire collection’s genetic variation and population structure, which could lay a good foundation for variety improvement, excellent genes mining, and germplasm innovation of sweetpotato.

Key words: sweetpotato, core collection, phenotypic traits, SSR markers, germplasm resource

Table 1

Quantified value of 20 qualitative traits in sweetpotato"

性状
Trait
缩写
Abbreviation
赋值
Quantified value
顶叶色
Color of top leaf
CTL 浅绿=1, 绿=2, 紫绿=3, 褐绿=4, 浅紫=5, 紫=6, 褐=7, 金黄=8, 红=9
Light green=1, Green=2, Purple-green=3, Brown-green=4, Light purple=5, Purple=6, Brown=7, Golden yellow=8, Red=9
顶叶形状
Shape of top leaf
STL 圆=1, 肾=2, 心=3, 尖心=4, 三角=5, 缺刻=6
Round=1, Reniform=2, Cordate=3, Acuminate-cordate=4, Triangular=5, Incised=6
顶芽色
Color of top bud
CTB 浅绿=1, 绿=2, 浅紫=3, 紫=4, 深紫=5, 褐=6
Light green=1, Green=2, Light purple=3, Purple=4, Dark purple=5, Brown=6
叶色
Leaf color
LC 浅绿=1, 绿=2, 紫绿=3, 褐绿=4, 浅紫=5, 紫=6, 褐=7, 金黄=, 红=9
Light green=1, Green=2, Purple-green=3, Brown-green=4, Light purple=5, Purple=6, Brown=7, Golden yellow=8, Red=9
叶片形状
Shape of leaf
SL 圆=1, 肾=2, 心=3, 尖心=4, 三角=5, 缺刻=6
Round=1, Reniform=2, Cordate=3, Acuminate-cordate=4, Triangular=5, Incised=6

Table 2

Sampling of the core collection"

样本数量
Number of samples
抽样比例
Sampling ratio
<10 60%-100%
<50 50%-55%
<100 25%-30%
<200 20%-5%
≥200 15%-20%

Fig. 1

Source information of all germplasm resources"

Fig. 2

Cluster dendrogram of the entire collection based on phenotype traits and SSR molecular markers A: cluster dendrogram based on phenotype traits; B: cluster dendrogram based on SSR molecular markers."

Fig. S1

Results of partial SSR molecular marker capillary electrophoresis A-D are the detection peaks of GDAAS0694, GDAAS0338, GDAAS0871, and GDAAS0922 respectively. The abscissas represented the banding site and the ordinates represented the relative intensity fluorescence."

Table 3

Sampling results based on phenotypic traits and SSR markers"

类别
Class
组别
Group
样本数量
Number of samples
抽样比例
Sampling ratio (%)
抽取样本数
Number of samples extracted
表型
Trait
1 230 17.83 41
2 24 50.00 12
3 16 50.00 8
4 57 28.07 16
5 189 22.75 43
6 42 50.00 21
7 23 52.17 12
8 96 27.08 26
类别
Class
组别
Group
样本数量
Number of samples
抽样比例
Sampling ratio (%)
抽取样本数
Number of samples extracted
9 1 100.00 1
10 413 17.43 72
共计Sum 251
SSR分子标记
SSR marker
1 639 17.53 112
2 90 27.78 25
3 200 17.50 35
4 22 50.00 11
5 42 50.00 21
6 37 51.35 19
7 4 75.00 3
8 19 52.63 10
9 4 75.00 3
10 34 50.00 17
共计Sum 256
合计 Total 289

Fig. S2

Cluster dendrogram of the core collection based on phenotype traits and SSR molecular markers A: based on phenotype traits; B: based on SSR molecular markers."

Table 4

Comparison of means, variances, range, coefficient of variation, and H′, and frequency distribution for 20 traits in the entire collections and core collections"

性状
Trait
级数
Number of classes
平均值Mean 方差Variance 极差Range 变异系数CV(%) 香农多样性指数(H’) t-test显著性
Significance
全部种质
Entire collection
核心种质
Core collection
全部种质
Entire collection
核心种质
Core collection
F-
F-value
全部种质
Entire collection
核心种质
Core collection
全部种质
Entire collection
核心种质
Core collection
全部种质
Entire collection
核心种质
Core collection
CTL 9 3.31 3.09 3.72 3.61 2.79 1-9 1-8 58.32 61.46 1.69 1.65 NS
STL 6 4.6 4.54 2.03 1.88 0.54 2-6 3-6 30.93 30.19 1.68 1.15 NS
CTB 6 2.64 2.55 1.96 1.76 0.86 1-6 1-6 53.07 51.99 1.43 1.41 NS
LC 9 2.02 2.1 0.35 0.65 3.58 1-9 1-9 29.33 38.39 0.55 0.73 NS
SL 6 4.65 4.65 2.14 2.10 0.00 1-6 2-6 31.42 31.15 1.04 1.02 NS
MVP 6 3.98 3.89 2.66 2.68 0.69 1-6 1-6 41.03 42.15 1.57 1.53 NS
SVP 6 3.55 3.47 2.69 2.93 0.49 1-6 1-6 46.21 49.31 1.52 1.56 NS
PBLV 5 3.47 3.45 0.97 1.15 0.09 1-5 1-5 28.41 31.14 1.24 1.35 NS
LAS 3 1.41 1.33 0.25 0.23 5.59 0-2 0-2 35.45 35.90 0.70 0.66 *
PPC 5 2.24 2.22 0.50 0.46 0.19 1-5 1-5 31.55 30.62 0.76 0.63 NS
PBP 5 3.02 3.02 0.97 1.14 0.01 1-5 1-5 32.50 35.36 1.19 1.25 NS
CV 6 2.53 2.53 1.40 1.47 0.06 1-6 1-6 46.72 47.51 0.77 0.87 NS
PCV 7 2.63 2.62 1.71 1.80 0.00 1-7 1-7 49.78 51.14 0.81 0.87 NS
SCV 5 1.75 1.63 2.26 2.19 1.48 0-4 0-4 86.13 91.05 1.33 1.26 NS
VTP 4 1.14 1.19 0.98 1.01 0.59 0-3 0-3 86.79 84.37 1.32 1.33 NS
PT 4 2.65 2.62 0.26 0.27 0.58 1-4 1-4 19.28 19.85 0.74 0.76 NS
VP 3 1.74 1.6 0.35 0.38 12.83 1-3 1-3 34.13 38.61 0.88 0.90 ***
SRS 9 4.19 4.18 2.91 2.78 0.00 1-9 1-9 40.73 39.85 1.60 1.55 NS
SCSR 10 5.66 5.74 7.17 7.93 0.24 1-10 1-10 47.36 49.02 2.09 2.09 NS
PFC 10 3.2 3.46 5.60 6.10 2.55 1-10 1-10 73.85 71.43 1.82 1.86 NS

Fig. 3

Frequency distribution diagram for 20 traits of the entire collections and core collections Abbreviations are the same as those given in Table 1. In this figure, the black and light gray represent the frequency distribution of the core collection and the frequency distribution of the entire collection, respectively."

Table 5

Comparison of genetic diversity of the entire collection and core collection"

指标
Index
全部种质
Entire collection
核心种质
Core collection
样本数量Number of samples 1091 289
平均等位基因数Average number of alleles (Na) 1.88 1.92
平均有效等位基因数Average number of effective alleles (Ne) 1.25 1.32
总条带数Total number of strips 135 101
多态性条带数Number of polymorphic bands 119 93
多态性条带百分率Percentage of polymorphic bands (%) 88.15 92.08
Nei’s遗传多样性指数Nei’s genetic diversity index (He) 0.15 0.19
Shannon’s多样性指数Shannon’s diversity index (I) 0.24 0.30

Fig. 4

Principal component plots for the entire collection and core collection based on phenotype traits and SSR molecular markers A: principal component plot based on phenotype traits; B: principal component plot based on SSR markers. In this figure, the red and light gray represent the frequency distribution of the core collection and the frequency distribution of the entire collection, respectively."

[1] 陆漱韵, 刘庆昌, 李惟基. 甘薯育种学. 北京: 中国农业出版社, 1998. pp 19-27.
Lu S Y, Liu Q C, Li W J. Sweetpotato Breeding. Beijing: China Agriculture Press, 1998. pp 19-27. (in Chinese)
[2] 房伯平, 张雄坚, 陈景益, 安康. 我国甘薯种质资源研究的历史与现状. 广东农业科学, 2004, (增刊1): 3-5.
Fang B P, Zhang X J, Chen J Y, An K. The history and status of sweetpotato germplasm research in China. Guangdong Agric Sci, 2004, (S1): 3-5. (in Chinese with English abstract)
[3] Frankel O H, Brown A H D. Plant genetic resources today:a critical appraisal. In: Holden J H W, Williams J T, eds. Crop Genetic Resources:Conservation and Evaluation. London: George Allen and Unwin, 1984. pp 249-257.
[4] 张洪亮, 李自超, 曹永生, 裘宗恩, 余萍, 王象坤. 表型水平上检验水稻核心种质的参数比较. 作物学报, 2003, 29: 252-257.
Zhang H L, Li Z C, Cao Y S, Qiu Z E, Yu P, Wang X K. Comparison of parameters for testing the rice core collection in phenotype. Acta Agron Sin, 2003, 29: 252-257. (in Chinese with English abstract)
[5] Hao C Y, Zhang X Y, Wang L F, Dong Y S, Shang X W, Jia J Z. Genetic diversity and core collection evaluations in common wheat germplasm from the northwestern spring wheat region in China. Mol Breed, 2006, 17: 69-77.
doi: 10.1007/s11032-005-2453-6
[6] 姚启伦, 方平, 杨克诚, 潘光堂. 基于SSR标记构建西南玉米地方品种核心种质的方法. 湖南农业大学学报(自然科学版), 2009, 35(3): 225-228.
Yao Q L, Fang P, Yang K C, Pan G T. Methods of constructing a core collection of maize landraces in southwest China based on SSR data. J Hunan Agric Univ (Nat Sci), 2009, 35(3): 225-228. (in Chinese with English abstract)
[33] Huang Y Q, Yin G T, Yang J C, Yu N, Zou W T, Li R S. Developing a mini core germplasm of Pheobe bournei based on SSR molecular marker. Mol Plant Breed, 2020, 18: 2641-2648. (in Chinese with English abstract)
[34] 中华人民共和国农业部. 农作物种质资源鉴定技术规程甘薯, NY/T 1320-2007, 2007.
Ministry of Agriculture, The People’s Republic of China. Technical specification for identification of crop germplasm resources-sweetpotato [Ipomoea batatas (L.) Lam.], NY/TNY/T 1320-2007, 2007 (in Chinese)
[35] 黎裕, 王天宇. 美国植物种质资源保护与研究利用. 作物杂志, 2018, (6): 1-9.
Li Y, Wang T Y. Conservation and utilization of American plant germplasm resources. Crops, 2018, (6): 1-9. (in Chinese)
[36] Oh J H, Lee Y J, Byeon E J, Kang B C, Kyeoung D S, Kim C K. Whole-genome resequencing and transcriptomic analysis of genes regulating anthocyanin biosynthesis in black rice plants. 3 Biotech, 2018, 8: 115.
doi: 10.1007/s13205-018-1140-3
[37] Han W L, Zhao J Y, Deng X J, Gu A X, Li D L, Wang Y X, Lu X S, Zu Q L, Chen Q, Chen Q J, Zhang J F, Qu Y Y. Quantitative trait locus mapping and identification of candidate genes for resistance to Fusarium wilt race 7 using a resequencing- based high density genetic bin map in a recombinant inbred line population of Gossypium barbadense. Front Plant Sci, 2022, 13: 815643.
doi: 10.3389/fpls.2022.815643
[38] Yamakawa H, Haque E, Tanaka M, Takagi H, Tamiya S. Polyploid QTL-seq towards rapid development of tightly linked DNA markers for potato and sweetpotato breeding through whole genome resequencing. Plant Biotechnol J, 2021, 19: 2040-2051.
doi: 10.1111/pbi.13633 pmid: 34008333
[7] 刘艳阳, 梅鸿献, 杜振伟, 武轲, 郑永战, 崔向华, 郑磊. 基于表型和SSR分子标记构建芝麻核心种质. 中国农业科学, 2017, 50: 2433-2441.
doi: 10.3864/j.issn.0578-1752.2017.13.003
Liu Y Y, Mei H X, Du Z W, Wu K, Zheng Y Z, Cui X H, Zheng L. Construction of core collection of sesame based on phenotype and molecular markers. Sci Agric Sin, 2017, 50: 2433-2441. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.13.003
[8] 刘中华, 林志坚, 李华伟, 许泳清, 李国良, 邱永祥, 邱思鑫, 汤浩. 甘薯种质资源遗传多样性的ISSR分析. 南方农业学报, 2019, 50: 2392-2400.
Liu Z H, Lin Z J, Li H W, Xu Y Q, Li G L, Qiu Y X, Qiu S X, Tang H. Genetic diversity analysis of sweetpotato [Ipomoea batatas (L.) Lam.] by ISSR molecular markers. J Southern Agric, 2019, 50: 2392-2400. (in Chinese with English abstract)
[9] 李慧峰, 陈天渊, 黄咏梅, 吴翠荣, 李彦青, 滑金锋, 范继征. 甘薯种质资源形态标记遗传多样性分析. 西南农业学报, 2015, 28: 2401-2407.
Li H F, Chen T Y, Huang Y M, Wu C R, Li Y Q, Hua J F, Fan J Z. Genetic diversity of sweetpotato germplasm resources revealed by morphological traits. Southwest China J Agric Sci, 2015, 28: 2401-2407. (in Chinese with English abstract)
[10] 易燚波, 岑亮, 郭小路, 张启堂, 傅玉凡, 唐云明. 甘薯种质资源的遗传多样性分析. 西南大学学报(自然科学版), 2008, 30(4): 156-162.
Yi Y B, Cen L, Guo X L, Zhang Q T, Fu Y F, Tang Y M. Genetic diversity of sweetpotato germplasm resources. J Southwest Univ (Nat Sci), 2008, 30(4): 156-162 (in Chinese with English abstract).
[11] Wang Z Y, Li J, Luo Z X, Huang L F, Chen X L, Fang B P, Li Y J, Chen J Y, Zhang X J. Characterization and development of EST-derived SSR markers in cultivated sweetpotato (Ipomoea batatas). BMC Plant Biol, 2011, 11: 139-139.
doi: 10.1186/1471-2229-11-139 pmid: 22011271
[12] 罗忠霞, 房伯平, 李茹, 王章英, 黄立飞, 陈景益, 张雄坚, 李育军, 陈新亮, 黄实辉. 基于EST-SSR标记的甘薯种质资源DNA指纹图谱构建. 植物遗传资源学报, 2014, 15: 810-814.
Luo Z X, Fang B P, Li R, Wang Z Y, Huang L F, Chen J Y, Zhang X J, Li Y J, Chen X L, Huang S H. Construction of DNA fingerprint database based on EST-SSR markers for sweetpotato germplasm. J Plant Genet Resour, 2014, 15: 810-814. (in Chinese with English abstract)
[13] 王建成, 胡晋, 黄歆贤, 徐盛春. 植物遗传资源核心种质新概念与应用进展. 种子, 2008, 27(5): 47-50.
Wang J C, Hu J, Huang X X, Xu S C. New concept and application on core collection of plant germplasm resources. Seed, 2008, 27(5): 47-50. (in Chinese with English abstract)
[14] 郑福顺, 王晓敏, 李国花, 李洪磊, 周鹏泽, 王林, 白圣懿, 刘珮君, 张雪艳, 胡新华, 付金军, 高艳明, 李建设. 基于表型性状的宁夏番茄种质资源核心种质构建. 浙江大学学报(农业与生命科学版), 2021, 47: 171-181.
Zheng F S, Wang X M, Li G H, Li H L, Zhou P Z, Wang L, Bai S Y, Liu P J, Zhang X Y, Hu X H, Fu J J, Gao Y M, Li J S. Core collection construction of Ningxia tomato germplasm resources based on phenotypic traits. J Zhejiang Univ (Agric Life Sci), 2021, 47: 171-181. (in Chinese with English abstract)
[15] 汪磊, 王姣梅, 汪魏, 王玲, 王力军, 严兴初, 谭美莲. 基于表型多样性构建向日葵核心种质. 中国油料作物学报, 2021, 43: 1052-1060.
Wang L, Wang J M, Wang W, Wang L, Wang L J, Yan X C, Tan M L. Development of a core collection in sunflower (Helianthus annuus L.) germplasm using phenotypic diversity. Chin J Oil Crop Sci, 2021, 43: 1052-1060 (in Chinese with English abstract).
[16] 侯志强, 王丽慧, 赵孟良, 杨世鹏, 孙雪梅, 高洁铭, 钟启文. 基于表型数据的菊芋核心种质初步构建. 分子植物育种, 2021, 19: 3463-3472.
Hou Z Q, Wang L H, Zhao M L, Yang S P, Sun X M, Gao J M, Zhong Q W. Preliminary construction of core collection of Jerusalem artichoke based on phenotypic data. Mol Plant Breed, 2021, 19: 3463-3472. (in Chinese with English abstract)
[17] 徐超华, 刘新龙, 毛钧, 刘洪博, 林秀琴, 陆鑫, 苏火生. 基于SSR分子标记数据构建割手密核心种质库. 湖南农业大学学报(自然科学版), 2020, 46: 657-663.
Xu C H, Liu X L, Mao J, Liu H B, Lin X Q, Lu X, Su H S. Construction of a core-collection of Saccharum spontaneum based on SSR molecular markers. J Hunan Agric Univ (Nat Sci), 2020, 46: 657-663. (in Chinese with English abstract)
[18] 张馨方, 张树航, 李颖, 郭燕, 王广鹏. 基于SSR标记构建燕山板栗核心种质. 华北农学报, 2021, 36(增刊1): 31-38.
Zhang X F, Zhang S H, Li Y, Guo Y, Wang G P. Construction of core collection of Yanshan chestnut germplasm based on SSR markers. Acta Agric Boreali-Sin, 2021, 36(S1): 31-38. (in Chinese with English abstract)
doi: 10.7668/hbnxb.20192435
[19] 李金龙, 范昱, 赵梦雨, 康珍, 杨克理, 张凯旋, 周美亮. 基于表型性状和SSR分子标记构建甜荞初级核心种质. 植物遗传资源学报, 2021, 22: 1240-1247.
Li J L, Fan Y, Zhao M Y, Kang Z, Yang K L, Zhang K X, Zhou M L. Construction of primary core collection of buckwheat germplasm resources based on Phenotypic traits and SSR. J Plant Genet Resour, 2021, 22: 1240-1247 (in Chinese with English abstract).
[20] Luan M B, Chen Y M, Wang X F, Xu Y, Sun Z M, Chen J H, Wang J S. Core collection of ramie comprising 1151 germplasms based on simple sequence repeats and phenotypic markers. Braz J Bot, 2018, 41: 859-866.
doi: 10.1007/s40415-018-0504-6
[21] Wang X L, Cao Z L, Gao C J, Li K. Strategy for the construction of a core collection for Pinus yunnanensis Franch. to optimize timber based on combined phenotype and molecular marker data. Genet Resour Crop Evol, 2021, 68: 3219-3240.
doi: 10.1007/s10722-021-01182-9
[22] Sa K J, Kim D M, Oh J S, Park H, Ju K L. Construction of a core collection of native Perilla germplasm collected from South Korea based on SSR markers and morphological characteristics. Sci Rep, 2021, 11: 23891.
doi: 10.1038/s41598-021-03362-0
[23] 张允刚, 房伯平. 甘薯种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 10-60.
Zhang Y G, Fang B P. Descriptors and Data Standard for Sweetpotato [Ipomoea batatas (L.) Lam.]. Beijing: China Agriculture Press, 2006. pp 10-60. (in Chinese)
[24] Meng Y S, Zhao N, Hui L I, Zhai H, Shao-Zhen H E, Liu Q C. SSR fingerprinting of 203 sweetpotato (Ipomoea batatas (L.) Lam.) varieties. J Integr Agric, 2018, 17: 86-93.
doi: 10.1016/S2095-3119(17)61687-3
[25] Hu J, Zhu J, Xu H M. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theor Appl Genet, 2000, 101: 264-268.
doi: 10.1007/s001220051478
[26] 刘遵春, 张春雨, 张艳敏, 张小燕, 吴传金, 王海波, 石俊, 陈学森. 利用数量性状构建新疆野苹果核心种质的方法. 中国农业科学, 2010, 43: 358-370.
Liu Z C, Zhang C Y, Zhang Y M, Zhang X Y, Wu C J, Wang H B, Shi J, Chen X S. Study on method of constructing core collection of Malus sieversii based on quantitative traits. Sci Agric Sin, 2010, 43: 358-370. (in Chinese with English abstract)
[27] Katinas L, Crisci J V. Agriculture biogeography: an emerging discipline in search of a conceptual framework. Prog Phys Geog, 2019, 42: 513-529.
doi: 10.1177/0309133318776493
[28] 闫彩霞, 王娟, 张浩, 李春娟, 宋秀霞, 孙全喜, 苑翠玲, 赵小波, 单世华. 基于表型性状构建中国花生地方品种骨干种质. 作物学报, 2020, 46: 520-531.
doi: 10.3724/SP.J.1006.2020.94101
Yan C X, Wang J, Zhang H, Li C J, Song X X, Sun Q X, Yuan C L, Zhao X B, Shan S H. Developing the key germplasm of Chinese peanut landraces based on phenotypic traits. Acta Agron Sin, 2020, 46: 520-531. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94101
[29] 崔竣杰, 程蛟文, 曹毅, 胡开林. 基于SSR标记和表型性状构建苦瓜核心种质的研究. 中国蔬菜, 2022, (2): 25-32.
Cui J J, Cheng J W, Cao Y, Hu K L. Construction of core bitter gourd germplasm based on SSR markers and phenotypic traits. China Veget, 2022, (2): 25-32. (in Chinese)
[30] Kumar A, Kumar S, Singh K B M, Prasad M, Thakur J K. Designing a mini-core collection effectively representing 3004 diverse rice accessions. Plant Commun, 2020, 1: 100049.
doi: 10.1016/j.xplc.2020.100049
[31] Rajput S G, Santra D K. Evaluation of genetic diversity of proso millet germplasm available in the United States using simple- sequence repeat markers. Crop Sci, 2016, 56: 2401-2409.
doi: 10.2135/cropsci2015.10.0644
[32] 李秀诗, 付瑜华, 周祥, 黎青, 刘凡值, 杨成龙, 周明强. 基于表型性状的薏苡初级核心种质库构建. 热带作物学报, 2020, 41: 669-675.
Li X S, Fu Y H, Zhou X, Li Q, Liu F Z, Yang C L, Zhou M Q. Establishment of Coix lacryma-jobi L. core germplasm collection based on phenotypic characters. Chin J Trop Crops, 2020, 41: 669-675. (in Chinese with English abstract)
[33] 黄雨芹, 尹光天, 杨锦昌, 余纽, 邹文涛, 李荣生. 基于SSR分子标记的闽楠(Phoebe bournei)核心种质的构建. 分子植物育种, 2020, 18: 2641-2648.
[1] ZHANG Jing, GAO Wen-Bo, YAN Lin, ZHANG Zong-Wen, ZHOU Hai-Tao, WU Bin. Identification and evaluation of salt-alkali tolerance and screening of salt-alkali tolerant germplasm of oat (Avena sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1551-1561.
[2] WU Shi-Yu, CHEN Kuang-Ji, LYU Zun-Fu, XU Xi-Ming, PANG Lin-Jiang, LU Guo-Quan. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweetpotato [J]. Acta Agronomica Sinica, 2023, 49(4): 1090-1101.
[3] LIU Ming, FAN Wen-Jing, ZHAO Peng, JIN Rong, ZHANG Qiang-Qiang, ZHU Xiao-Ya, WANG Jing, LI Qiang. Genotypes screening and comprehensive evaluation of sweetpotato tolerant to low potassium stress at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 926-937.
[4] SUN Xian-Jun, JIANG Qi-Yan, HU Zheng, LI Hong-Bo, PANG Bin-Shuang, ZHANG Feng-Ting, ZHANG Sheng-Quan, ZHANG Hui. Identification and evaluation of wheat germplasm resources at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 1132-1139.
[5] YAO Zhu-Fang, ZHANG Xiong-Jian, YANG Yi-Ling, HUANG Li-Fei, CHEN Xin-Liang, YAO Xiao-Jian, LUO Zhong-Xia, CHEN Jing-Yi, WANG Zhang-Ying, FANG Bo-Ping. Genetic diversity of phenotypic traits in 177 sweetpotato landrace [J]. Acta Agronomica Sinica, 2022, 48(9): 2228-2241.
[6] HUAI Yuan-Yuan, ZHANG Sheng-Rui, WU Ting-Ting, AZAM Muhammad, LI Jing, SUN Shi, HAN Tian-Fu, LI Bin, SUN Jun-Ming. Potential evaluation of molecular markers related to major nutritional quality traits in soybean breeding [J]. Acta Agronomica Sinica, 2022, 48(8): 1957-1976.
[7] CHEN Lu, ZHOU Shu-Qian, LI Yong-Xin, CHEN Gang, LU Guo-Quan, YANG Hu-Qing. Identification and expression analysis of uncoupling protein gene family in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(7): 1683-1696.
[8] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[9] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[10] HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379.
[11] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[12] LI Xiao-Yu, FANG Xiao-Mei, WU Hao-Tian, WANG Ying-Qian, LIU Yang, TANG Tian, WANG Yu-Dong, WU Yin-Huan, YUE Lin-Qing, ZHANG Rui-Feng, CUI Jing-Bin, ZHANG Jian, YI Ze-Lin. Association analysis of agronomic traits of tartary buckwheat germplasm resources with SSR markers [J]. Acta Agronomica Sinica, 2022, 48(12): 3091-3107.
[13] WANG Qian, LIU Shao-Xiong, CHAI Xiao-Jiao, LI Hai, ZHANG Fen, LU Ping, WANG Rui-Yun, LIU Min-Xuan. Content diversity of phenolic compounds of waxy sorghum grains in different provinces, cities, and autonomous regions of China [J]. Acta Agronomica Sinica, 2022, 48(10): 2505-2516.
[14] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[15] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .