Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (7): 1994-2001.doi: 10.3724/SP.J.1006.2023.24196

• RESEARCH NOTES • Previous Articles     Next Articles

Functional analysis of StZIP12 in regulating potato Zn uptake

SUO Hai-Cui(), LIU Ji-Tao, WANG Li, LI Cheng-Chen, SHAN Jian-Wei, LI Xiao-Bo*()   

  1. Crops Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Province Key Laboratory of Crop Genetic Improvement, Guangzhou 510640, Guangdong, China
  • Received:2022-08-26 Accepted:2022-11-28 Online:2023-07-12 Published:2022-12-12
  • Contact: *E-mail: Lixiaobo1981@163.com E-mail:suohaicui@163.com;Lixiaobo1981@163.com
  • Supported by:
    The National Natural Science Foundation of China’s Youth Fund(31701486)

Abstract:

Potato is the fourth largest food crop in the world. Two-thirds of the world’s population feed on potato, which is an important target crop for zinc biofortification strategy. It is of great importance to study zinc uptake in potato. Zinc transporters regulate zinc uptake in plants. In this study, we cloned potato zinc transporter StZIP12 on the basis of previous studies. Quantitative PCR results showed that StZIP12 was expressed in all potato tissues, and the relative expression level of StZIP12 in young leaves was significantly higher than that in other tissues. In addition, low zinc treatment could also induce StZIP12 expression. The heterologous yeast complementation test confirmed that StZIP12 could restore the zinc absorption function of ZHY3 (zrt1zrt2) yeast mutant. We obtained StZIP12 overexpressing transgenic plants in cultivar potato Eshu 3 by genetic transformation method. Under zinc deficiency treatment, the overexpression of StZIP12 increased plant height of transgenic plants, root length, and the total zinc content of transgenic seedlings, and the zinc content of tubers of pot-cultured transgenic plants. The zinc content of tubers of two lines was 22.00% and 32.95% higher than that of the control, respectively. These results prove that StZIP12 playes an important role in the absorption of zinc in potato, and provides a theoretical basis for the biofortification of potato zinc.

Key words: potato, zinc transporter, StZIP12, zinc absorption

Fig. 1

Cloning and transmembrane domain analysis of StZIP12 gene A: the isolation of StZIP12 gene. Lane 1, 2, and 3 are all potato StZIP12 genes. M2000 is DL 2000 DNA marker. B: the sequence analysis of StZIP12, gray letters in the background represent amino acid sequences. C: StZIP12 transmembrane domain analysis. The yellow area represents the transmembrane structure and the gray area represents the cell membrane."

Fig. 2

StZIP12 protein is subcellular localized on the cell membrane Bar: 50 μm."

Fig. 3

Relative expression pattern of StZIP12 genes Error bar represents standard error. Duncan’s analysis method is used for multiple comparisons. Different lowercase represents significant difference at P < 0.05."

Fig. 4

Functional complementation of StZIP12 to yeast zinc uptake deficient mutant VC: the empty vector controls; 10-1-10-4 represent the dilution concentration of bacterial solution, respectively."

Fig. 5

Detection of transgenic lines by qRT-PCR ES3: non transgenic control; OE-26, OE-27, OE-28, OE-31, OE-32, OE-47, and OE-67 are overexpressed StZIP12 lines."

Fig. 6

Phenotype and zinc content of potato transgenic tissue culture seedlings under zinc deficiency treatments A: plant phenotype analysis. Error bar represents standard error. Duncan’s analysis method is used for multiple comparisons. Different lowercase represents significant difference at P < 0.05. B: plant phenotype; C: the classification of root volume. CK: the normal zinc treatment;-Zn: zinc deficiency treatment."

Fig. 7

Phenotype, plant height, and zinc content of transgenic lines under zinc deficiency treatment CK: normal zinc treatment;-Zn: zinc deficiency treatment. Error bar represents standard error. Duncan’s analysis method is used for multiple comparisons. Different lowercase represents significant difference at P < 0.05."

[1] Bouis H E, Hotz C, McClafferty B, Meenakshi J V, Pfeiffer W H. Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull, 2011, 32: S31-S40.
[2] 古秋霞, 林群, 黄修杰. 2015年广东马铃薯产业发展形势与对策建议. 广东农业科学, 2016, 43(3): 21-24.
Gu Q X, Lin Q, Huang X J. Development situation and countermeasures of potato industry in Guangdong in 2015. Guangdong Agric Sci, 2016, 43(3): 21-24. (in Chinese with English abstract)
[3] Monsant A C, Kappen P, Wang Y, Pigram P J, Baker A J M, Tang C. In vivo speciation of zinc in Noccaea caerulescens in response to nitrogen form and zinc exposure. Plant Soil, 2011, 1: 167-183.
doi: 10.1007/BF02080924
[4] López-millán A F, Ellis D R, Grusak M A. Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula. Plant Mol Biol, 2004, 54: 583-596.
[5] Eide D, Broderius M, Fett J, Guerinot M L. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA, 1996, 93: 5624-5628.
doi: 10.1073/pnas.93.11.5624 pmid: 8643627
[6] Wang Y H, Yang J, Miao R, Kang Y, Qi Z. A novel zinc transporter essential for Arabidopsis zinc and iron-dependent growth. J Plant Physiol, 2021, 256: 15329.
[7] Milner M J, Jesse S, Eric C, Kochian L V. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot, 2013, 64: 369-381.
doi: 10.1093/jxb/ers315 pmid: 23264639
[8] Lin Y F, Liang H M, Yang S Y, Boch A, Clemens S, Chen C C, Wu J F, Huang J L, Yeh K C. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol, 2009, 182: 392-404.
doi: 10.1111/j.1469-8137.2009.02766.x pmid: 19210716
[9] Grégory V, Grotz N, Fabienne D, Frédéric G, Curie C. Irt1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell, 2002, 6: 1223-1233.
[10] Connolly E L. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell, 2002, 6: 1347-1357.
[11] Grégory V, Jean-François B, Curie C. Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant J, 2001, 26: 181-189.
doi: 10.1046/j.1365-313x.2001.01018.x
[12] Rogers E E, Eide D J, Guerinot M L. Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci USA, 2000, 22: 12356-12360.
[13] Lee S, Jeong H J, Kim S A, Lee J, Guerinot M L, An G. OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol, 2010, 73: 507-517.
doi: 10.1007/s11103-010-9637-0 pmid: 20419467
[14] Yang X, Huang J, Jiang Y, Zhang H S. Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Mol Biol Rep, 2009, 2: 281-287.
[15] Chen W R, Feng Y, Chao Y E. Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiency. Russ J Plant Physiol, 2008, 55: 400-409.
doi: 10.1134/S1021443708030175
[16] Ishimaru Y, Masuda H, Suzuki M, Bashir K, Takahashi M, Nakanishi H, Mori S, Nishizawa N K. Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J Exp Bot, 2007, 58: 2909-2915.
doi: 10.1093/jxb/erm147 pmid: 17630290
[17] Kabir A H, Akther M S, Skalicky M, Das U, Hossain M M. Downregulation of Zn transporters along with Fe and redox imbalance causes growth and photosynthetic disturbance in Zn deficient tomato. Sci Rep, 2021, 11: 6040.
doi: 10.1038/s41598-021-85649-w
[18] Tiong J L, Mcdonald G K, Genc Y, Pedas P, Hayes J E, Toubia J, Langridge P, Huang C Y. HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. New Phytol, 2013, 201: 131-143.
doi: 10.1111/nph.2013.201.issue-1
[19] Ramesh S A, Choimes S, Schachtman D P. Over-expression of an Arabidopsis zinc transporter in hordeum vulgare increases short-term zinc uptake after zinc deprivation and seed zinc content. Plant Mol Biol, 2004, 54: 373-385.
doi: 10.1023/B:PLAN.0000036370.70912.34
[20] Gaitánsolís E, Taylor N J, Dimuth S, William S, Schachtman D P. Overexpression of the transporters AtZIP1 and AtMTP1 in cassava changes zinc accumulation and partitioning. Front Plant Sci, 2015, 6: 492.
doi: 10.3389/fpls.2015.00492 pmid: 26217349
[21] Guerinot M L. The ZIP family of metal transporters. Biochim Biophys Acta, 2000, 1465: 190-198.
doi: 10.1016/s0005-2736(00)00138-3 pmid: 10748254
[22] Williams L E, Pittman J K, Hall J L. Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta, 2000, 1465: 104-126.
pmid: 10748249
[23] Gaxiola R A, Fink G R, Hirschi K D. Genetic manipulation of vacuolar proton pumps and transporters. Plant Physiol, 2002, 129: 967-973.
pmid: 12114553
[24] Mills R F, Krijger G C, Baccarini P J, Hall J L, Williams L E. Functional expression of At HMA4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J, 2003, 35: 164-176.
doi: 10.1046/j.1365-313X.2003.01790.x
[25] 张丽婷, 王志强, 马兴立, 彭凌馨, 郭瑞盼, 王俊哲, 刘康, 林同保. 植物中锌转运蛋白的研究进展. 贵州农业科学, 2014, 42(8): 55-60.
Zhang L T, Wang Z Q, Ma X L, Peng L X, Guo R P, Wang J Z, Liu K, Lin T B. Research progress of zinc transporters in plants. Guizhou Agric Sci, 2014, 42(8): 55-60. (in Chinese with English abstract)
[26] Henriques A R, Chalfun-Junior A, Aarts M. Strategies to increase zinc deficiency tolerance and homeostasis in plants. Brazi J Plant Physiol, 2011, 24: 3-8.
[27] López Millán A F, Ellis D R, Grusak M A. Effect of zinc and manganese supply on the activities of superoxide dismutase and carbonic anhydrase in Medicago truncatula wild type and raz mutant plants. Plant Sci, 2005, 168: 1015-1022.
doi: 10.1016/j.plantsci.2004.11.018
[28] Zhao H, Eide D. The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci USA, 1996, 93: 2454-2458.
doi: 10.1073/pnas.93.6.2454 pmid: 8637895
[29] Li X B, Suo H C, Liu J T, Wang L, Li C C, Liu W. Genome-wide identification and expression analysis of the potato ZIP gene family under Zn-deficienc. Biol Planta, 2020, 64: 845-855.
doi: 10.32615/bp.2020.125
[30] 武亮亮, 姚磊, 马瑞, 朱熙, 杨江伟, 张宁, 司怀军. 马铃薯HD-Zip I家族ATHB12基因的克隆及功能鉴定. 作物学报, 2016, 42: 1112-1121.
doi: 10.3724/SP.J.1006.2016.01112
Wu L L, Yao L, Ma R, Zhu X, Yang J W, Zhang N, Si H J. Cloning and functional identification of the ATHB12 gene of HD-Zip I family in potato (Solanum tuberosum L.). Acta Agron Sin, 2016, 42: 1112-1121. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01112
[31] 傅明辉, 陈肖丽. 植物锌铁转运蛋白ZIP家族的生物信息学分析. 广东农业科学, 2015, 42(1): 124-132.
Fu M H, Chen X L. Bioinformatic analysis of ZIP family of zinc and iron transporters in plants. Guangdong Agric Sci, 2015, 42(1): 124-132. (in Chinese with English abstract)
[32] Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa N K. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+, transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr, 2006, 52: 464-469.
doi: 10.1111/j.1747-0765.2006.00055.x
[33] Tan L T, Qu M M, Zhu Y X, Peng C, Wang J R, Gao D Y, Chen C Y. ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in zinc/cadmium uptake. Plant Physiol, 2020, 183: 1235-1249.
doi: 10.1104/pp.19.01569 pmid: 32341004
[34] Li S Z, Zhou X J, Huang Y Q, Zhu L Y, Zhang S J, Zhao Y F, Guo J J, Chen J T, Chen R. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biol, 2013, 13: 114.
doi: 10.1186/1471-2229-13-114 pmid: 23924433
[35] Fu X Z, Zhou X, Xing F, Ling L L, Peng L Z. Genome-wide identification, cloning and functional analysis of the zinc/iron-regulated transporter-like protein (ZIP) gene family in trifoliate orange (Poncirus trifoliata L. Raf.). Front Plant Sci, 2017, 8: 588.
doi: 10.3389/fpls.2017.00588 pmid: 28469631
[36] Ramegowda Y, Venkategowda R, Jagadish P, Govind G, Hanumanthareddy R R, Makarla U, Guligowda S A. Expression of a rice Zn transporter, OsZIP1, increases Zn concentration in tobacco and finger millet transgenic plants. Plant Biotechnol Rep, 2013, 7: 309-319.
doi: 10.1007/s11816-012-0264-x
[37] Huang S, Ma J F. Silicon suppresses zinc uptake through down-regulating zinc transporter gene in rice. Physiol Planta, 2020, 170: 580-591.
doi: 10.1111/ppl.v170.4
[38] Huang S, Sasaki A, Yamaji N, Okada H, Mitani-Ueno N, Ma J F. The ZIP transporter family member OsZIP9 contributes to root zinc uptake in rice under zinc-limited conditions. Plant Physiol, 2020, 183: 1224-1234.
doi: 10.1104/pp.20.00125 pmid: 32371522
[39] Youngsup S, Ryuichi T, Hiromi N, Takashi Y. Sweet potato expressing the rice Zn transporter OsZIP4 exhibits high Zn content in the tuber. Plant Biotechnol, 2016, 33: 99-104.
doi: 10.5511/plantbiotechnology.16.0328a
[40] Tan L T, Zhu Y X, Fan T, Peng C, Wang J R. OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Biochem Biophys Res Commun, 2019, 512: 112-118.
doi: 10.1016/j.bbrc.2019.03.024
[41] Ricachenevsky F K, Punshon T, Lee S, Oliveira B H N, Trenz T S, Maraschin F S, Hindt M N, Danku J, Salt D E, Fett J P, Guerinot M L. Elemental profiling of rice FOX lines leads to characterization of a new Zn plasma membrane transporter, OsZIP7. Front Plant Sci, 2018, 9: 865.
doi: 10.3389/fpls.2018.00865 pmid: 30018622
[1] JIA Rui-Xue, CHEN Yi-Hang, ZHANG Rong, TANG Chao-Chen, WANG Zhang-Ying. Simultaneous determination of 13 carotenoids in sweetpotato by Ultra Performance Liquid Chromatography [J]. Acta Agronomica Sinica, 2023, 49(8): 2259-2274.
[2] ZHAO Xi-Juan, LIU Sheng-Xuan, LIU Teng-Fei, ZHENG Jie, DU Juan, HU Xin-Xi, SONG Bo-Tao, HE Chang-Zheng. Transcriptome analysis reveals the regulatory role of the transcription factor StMYB113 in light-induced chlorophyll synthesis of potato tuber epidermis [J]. Acta Agronomica Sinica, 2023, 49(7): 1860-1870.
[3] WANG Yan-Nan, CHEN Jin-Jin, BIAN Qian-Qian, HU Lin-Lin, ZHANG Li, YIN Yu-Meng, QIAO Shou-Chen, CAO Guo-Zheng, KANG Zhi-He, ZHAO Guo-Rui, YANG Guo-Hong, YANG Yu-Feng. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1785-1798.
[4] MEI Yu-Qin, LIU Yi, WANG Chong, LEI Jian, ZHU Guo-Peng, YANG Xin-Sun. Genome-wide identification and expression analysis of PHB gene family in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(6): 1715-1725.
[5] ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444.
[6] CHEN Yi-Hang, TANG Chao-Chen, ZHANG Xiong-Jian, YAO Zhu-Fang, JIANG Bing-Zhi, WANG Zhang-Ying. Construction of core collection of sweetpotato based on phenotypic traits and SSR markers [J]. Acta Agronomica Sinica, 2023, 49(5): 1249-1261.
[7] LIU Ming, FAN Wen-Jing, ZHAO Peng, JIN Rong, ZHANG Qiang-Qiang, ZHU Xiao-Ya, WANG Jing, LI Qiang. Genotypes screening and comprehensive evaluation of sweetpotato tolerant to low potassium stress at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 926-937.
[8] LI Hong-Yan, LI Jie-Ya, LI Xiang, YE Guang-Ji, ZHOU Yun, WANG Jian. Effects of overexpression of LrAN2 gene on contents of anthocyanins and glycoalkaloids in potato [J]. Acta Agronomica Sinica, 2023, 49(4): 988-995.
[9] ZHANG Wei-Na, YU Hui-Fang, AN Zhen, LIU Wen-Kai, KANG Yi-Chen, SHI Ming-Fu, YANG Xin-Yu, ZHANG Ru-Yang, WANG Yong, QIN Shu-Hao. StEFR1 regulates late blight resistance positively in potato (Solanum tuberosum) [J]. Acta Agronomica Sinica, 2023, 49(4): 996-1005.
[10] WU Shi-Yu, CHEN Kuang-Ji, LYU Zun-Fu, XU Xi-Ming, PANG Lin-Jiang, LU Guo-Quan. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweetpotato [J]. Acta Agronomica Sinica, 2023, 49(4): 1090-1101.
[11] WANG Shuo, BAO Tian-Yang, LIU Jian-Gang, DUAN Shao-Guang, JIAN Yin-Qiao, LI Guang-Cun, JIN Li-Ping, XU Jian-Fei. Potato tuber greening evaluation based on RGB color space [J]. Acta Agronomica Sinica, 2023, 49(4): 1102-1110.
[12] PU Xue, WANG Kai-Tong, ZHANG Ning, SI Huai-Jun. Relative expression analysis of StMAPKK4 gene and screening and identification of its interacting proteins in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2023, 49(1): 36-45.
[13] WU Xu-Li, WU Zheng-Dan, WAN Chuan-Fang, DU Ye, GAO Yan, LI Ze-Xuan, WANG Zhi-Qian, TANG Dao-Bin, WANG Ji-Chun, ZHANG Kai. Functional identification of sucrose transporter protein IbSWEET15 in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(1): 129-139.
[14] YAO Zhu-Fang, ZHANG Xiong-Jian, YANG Yi-Ling, HUANG Li-Fei, CHEN Xin-Liang, YAO Xiao-Jian, LUO Zhong-Xia, CHEN Jing-Yi, WANG Zhang-Ying, FANG Bo-Ping. Genetic diversity of phenotypic traits in 177 sweetpotato landrace [J]. Acta Agronomica Sinica, 2022, 48(9): 2228-2241.
[15] HUI Zhi-Ming, XU Jian-Fei, JIAN Yin-Qiao, BIAN Chun-Song, DUAN Shao-Guang, HU Jun, LI Guang-Cun, JIN Li-Ping. 2b-RAD based maturity associated molecular marker identification in tetraploid potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2274-2284.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .