Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (7): 1735-1746.doi: 10.3724/SP.J.1006.2023.22050

• REVIEW •     Next Articles

Research progress on physiological ecology and genetic basis of rice plant architecture

XU Na(), XU Quan*(), XU Zheng-Jin, CHEN Wen-Fu   

  1. Rice Research Institute of Shenyang Agricultural University, Shenyang 110866, Liaoning, China
  • Received:2022-09-05 Accepted:2023-02-19 Online:2023-07-12 Published:2023-02-24
  • Contact: *E-mail: kobexu34@syau.edu.cn E-mail:xuna1109@163.com;kobexu34@syau.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(32071982);The National Natural Science Foundation of China(U1708231);The National Natural Science Foundation of China(31430062);The National Key Research and Development Program of China(2017YFD0100500)

Abstract:

Rice is one of the most important crops in China and even the world. Plant type is an important agronomic trait of rice, which is closely related to yield, quality, and stress resistance. Plant type improvement has played an important role in rice breeding in the past, and will have a profound impact on rice breeding in the future. On the base of related achievements of Rice Research Institute of Shenyang Agricultural University, this paper comprehensively reviewed the research progress of rice plant type from the aspects of the concept of plant type, physiological ecology, and genetic basis of plant type breeding, and also discussed the existing problems and development direction of rice plant type. With the application of the latest research results of modern molecular biology, analyze the relationship between various organs and their optimal combination among population and individual, define the physiological ecology basis and the molecular regulatory network, and apply to plant type breeding practice, which is expected to achieve a higher level of “ideal plant type breeding” of rice.

Key words: rice, plant type, physiological ecology, genetic basis

Fig. 1

Comparison of physiological and ecological characteristics among the typical GJ rice variety (A), the typical XI rice variety (B), and the erect panicle architecture GJ rice variety (C) The size of icons and arrows indicates the diffusion intensity of solar radiation, H2O and CO2. GJ: geng/japonica; XI: xian/indica."

Fig. 2

Lodging process induces by panicle curvature in typical GJ rice variety"

Fig. 3

Morphological and anatomical characteristics of typical XI rice variety (left) and erect panicle architecture GJ rice variety (right)"

Fig. 4

Relationship among grain shape, panicle architecture, yield, and quality of XI and GJ rice variety"

Fig. 5

Proposed molecular mechanism of tiller angle, tiller number, and leaf angle"

[1] Engledow F L, Wadham S M. Investigations on yield in the cereals I. J Agric Sci, 1923, 13: 390-439.
doi: 10.1017/S0021859600003828
[2] Heath O V S, Gregory F G. The constancy of the mean net assimilation rate and its ecological importance. Ann Bot, 1938, 2: 811-818.
doi: 10.1093/oxfordjournals.aob.a084036
[3] 门司正三, 佐伯敏郎. 光合作用与作物生产译丛(2). 朱建人译. 北京: 中国农业出版社, 1980. pp 1-24.
Monsi M, Saeki T. Photosynthesis and Crop Production (2). Zhu J R, Trans. Beijing: China Agriculture Press, 1980. pp 1-24. (in Chinese)
[4] 角田重三郎, 高桥成人. 稻的生物学. 闵绍楷等译. 北京: 中国农业出版社, 1989. pp 80-105.
Tsunoda S, Takahashi N. Biology of Rice. Min S K, et al. Trans. Beijing: China Agriculture Press, 1989. pp 80-105. (in Chinese)
[5] Donald C M. The breeding of crop ideotypes. Euphytica, 1968, 17: 385-403.
doi: 10.1007/BF00056241
[6] 松岛省三. 稻作的理论与技术. 庞诚译. 北京: 中国农业出版社, 1979. pp 3-8.
Matsushima S. Theory and Technology of Rice Cultivation. Pang C, Trans. Beijing: Agriculture Press, 1979. pp 3-8. (in Chinese)
[7] 陈温福, 徐正进, 张龙步. 北方粳型超级稻育种的理论与方法. 沈阳农业大学学报, 2005, 36(1): 3-8.
Chen W F, Xu Z J, Zhang L B. Theories and methods of breeding japonica rice for super high yield. J Shenyang Agric Univ, 2005, 36(1): 3-8. (in Chinese with English abstract)
[8] 杨守仁, 张龙步, 王进民. 水稻理想株形育种的理论和方法初论. 中国农业科学, 1984, 17(3): 6-13.
Yang S R, Zhang L B, Wang J M. The theory and method of ideal plant morphology in rice breeding. Sci Agric Sin, 1984, 17(3): 6-13. (in Chinese with English abstract)
[9] 黄耀祥, 林青山. 水稻超高产、特优质株型模式的构想和育种实践. 广东农业科学, 1994, (4): 1-6.
Huang Y X, Lin Q S. Thinking and practice on rice breeding method for high yield and good grain quality. Guangdong Agric Sci, 1994, (4): 1-6. (in Chinese)
[10] Peng S, Cassman K G, Virmani S S, Sheehy J, Khush G S. Yield potential trends of tropical eice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci, 1999, 39: 1552-1559.
doi: 10.2135/cropsci1999.3961552x
[11] 李诚, 吴俊, 庄文, 邓启云. 水稻高产育种与形态改良. 杂交水稻, 2013, 28(3): 1-5.
Li C, Wu J, Zhuang W, Deng Q Y. Research progress in rice breeding for high yield through improvement of plant type. Hybrid Rice, 2013, 28(3): 1-5. (in Chinese with English abstract)
[12] Jiang L L, Wu L A, Wang Y, Xu Q, Xu Z J, Chen W F. Research progress on the divergence and genetic basis of agronomic traits in xian and geng rice. Crop J, 2022, 10: 924-931.
doi: 10.1016/j.cj.2022.02.006
[13] 徐正进, 陈温福, 周洪飞, 张龙步, 杨守仁. 直立穗型水稻群体生理生态特性及其利用前景. 科学通报, 1996, 41: 1122-1126.
Xu Z J, Chen W F, Zhou W F, Zhang L B, Yang S R. Characteristics of rice with erect panicle and prospects of their utilization. Chin Sci Bull, 1996, 41: 1122-1126 (in Chinese with English Abstract).
doi: 10.1360/csb1996-41-12-1122
[14] 徐正进, 张树林, 周淑清, 刘丽霞. 水稻穗型与抗倒伏性关系的初步分析. 植物生理学报, 2004, 40: 561-563.
Xu Z J, Zhang S L, Zhou S Q, Liu L X. Primary analysis of relationship between rice panicle type and lodging resistance. Plant Physiol J, 2004, 40: 561-563. (in Chinese with English abstract)
doi: 10.1104/pp.40.3.561
[15] 袁隆平. 杂交水稻超高产育种. 杂交水稻, 1997, 12(6): 1-6.
Yuan L P. Hybrid rice breeding for super high yield. Hybrid Rice, 1997, 12(6): 1-6. (in Chinese with English abstract)
[16] 東正昭. 水稲超多収品種育種の現状と今後の課題. 農業および園芸, 1987, 63: 793-799.
Tadaaki H. Breeding of ultra-high yielding varieties of paddy rice: present status and future problems. Agric Hortic, 1987, 63: 793-799. (in Japanese)
[17] Peng S, Khush G S, Cassman K G. Evolution of the new plant ideotype for increased yield potential. In: CassmanK G,ed. Breaking the Yield Barrier. Philippines: International Rice Research Institute, 1994. pp 5-20.
[18] 陈温福, 徐正进. 水稻超高产育种理论与方法. 北京: 科学出版社, 2008. pp 35-69.
Chen W F, Xu Z J. Theories and Methods of Rice Breeding for Super High Yield. Beijing: Science Press, 2008. pp 35-69. (in Chinese)
[19] 章怡兰, 林雪, 吴仪, 李梦佳, 张晟婕, 路梅, 饶玉春, 王跃星. 水稻根系遗传育种研究进展. 植物学报, 2020, 55: 382-393.
doi: 10.11983/CBB20021
Zhang Y L, Lin X, Wu Y, Li M J, Zhang S J, Lu M, Rao Y C, Wang Y X. Research progress on rice root genetics and breeding. Chin Bull Bot, 2020, 55: 382-393 (in Chinese with English abstract).
[20] 丁兆军, 白洋. 根系发育和微生物组研究现状及未来发展趋势. 中国科学: 生命科学, 2021, 51: 1447-1456.
Ding Z J, Bai Y. The current and future studies on plant root development and root microbiota. Sci Sin (Vitae), 2021, 51: 1447-1456. (in Chinese with English abstract)
[21] 川田信一郎. 水稲の根. 東京: 農山漁村文化協会, 1982. pp 599-609.
Kawada S. Root System of Rice. Tokyo: Rural Culture Association, 1982. pp 599-609. (in Japanese)
[22] Yoshida S, Bhattacharjee D P, Cabuslay G S. Relationship between plant type and root growth in rice. Soil Sci Plant Nutr, 1982, 28: 473-482.
doi: 10.1080/00380768.1982.10432387
[23] 朱德峰, 林贤青, 曹卫星. 水稻深层根系对生长和产量的影响. 中国农业科学, 2001, 34: 429-432.
Zhu D F, Lin X Q, Cao W X. Effects of deep roots on growth and yield in two rice varieties. Sci Agric Sin, 2001, 34: 429-432 (in Chinese with English abstract)
[24] Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J Z, Matsumoto T, Takai T, Okuno K, Yano M. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet, 2013, 45: 1097-1102.
doi: 10.1038/ng.2725
[25] Pingali P L. Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci USA, 2012, 109: 12302-12308.
doi: 10.1073/pnas.0912953109 pmid: 22826253
[26] 赵小红, 白羿雄, 姚有华, 安立昆, 吴昆仑. 禾谷类作物茎秆特性与茎倒伏关系的研究. 植物生理学报, 2021, 57: 257-264.
Zhao X H, Bai Y X, Yao Y H, An L K, Wu K L. Research progress on the relationship between stem characteristics and crop stem lodging. Plant Physiol J, 2021, 57: 257-264. (in Chinese with English abstract)
doi: 10.1104/pp.57.2.257
[27] 滕祥勇, 王金明, 李鹏志, 林秀云, 孙强. 水稻抗倒伏性的影响因素及评价方法研究进展. 福建农业学报, 2021, 36: 1245-1254.
Teng X Y, Wang J M, Li P Z, Lin X Y, Sun Q. Advances on studies relating to lodging resistance of rice plant. Fujian J Agric Sci, 2021, 36: 1245-1254. (in Chinese with English abstract)
[28] 方立魁, 桑贤春, 何光华. 水稻分蘖角度遗传机制的研究进展. 分子植物育种, 2008, 6: 935-940.
Fang L K, Sang X C, He G H. Development of mechanism genetics of tiller angle in rice. Mol Plant Breed, 2008, 6: 935-940. (in Chinese with English abstract)
[29] 陈温福, 徐正进, 张龙步, 杨守仁. 水稻叶片气孔密度与气体扩散阻力和净光合速率关系的比较研究. 中国水稻科学, 1990, 4: 163-168.
Chen W F, Xu Z J, Zhang L B, Yang S R. Comparative studies on stomatal density and its relations to gas diffusion resistance and net photosynthetic rate in rice leaf. Chin J Rice Sci, 1990, 4: 163-168. (in Chinese with English abstract)
[30] Khush G S. Prospects and approaches to increasing the genetic yield of rice. In: EvensonR E, HerdtR W, HossainM,eds. Rice Research in Asia:Progress and Priorities. Wallingford: CAB International in Association with the International Rice Research Institute, 1996.
[31] 徐正进, 陈温福, 黄瑞冬, 中崎铁也, 奥本裕, 古坂隆俊. 水稻穗型改良的生理与遗传基础研究进展. 自然科学进展, 2007, 17: 1161-1167.
Xu Z J, Chen W F, Huang R D, Nakazaki T, Okumoto Y, Tanisaka T. Research progress on the physiological and genetic basis of rice panicle type improvement. Prog Nat Sci, 2007, 17: 1161-1167. (in Chinese)
[32] 熊振民, 朱旭东, 孔繁林, 王国梁. 水稻着粒密度的遗传分析. 中国水稻科学, 1987, 1: 101-106.
Xiong Z M, Zhu X D, Kong F L, Wang G L. Genetic analysis of spikelet density on rice. Chin J Rice Sci, 1987, 1: 101-106. (in Chinese with English abstract)
[33] 徐正进, 陈温福. 中国北方粳型超级稻研究进展. 中国农业科学, 2016, 49: 239-250.
doi: 10.3864/j.issn.0578-1752.2016.02.005
Xu Z J, Chen W F. Research progress and related problems on japonica super rice in northern China. Sci Agric Sin, 2016, 49: 239-250. (in Chinese with English abstract)
[34] Fei C, Xu Q, Xu Z J, Chen W F. Effect of rice breeding process on improvement of yield and quality in China. Rice Sci, 2020, 27: 363-367.
doi: 10.1016/j.rsci.2019.12.009
[35] 徐正进, 陈温福, 张树林, 张文忠, 马殿荣, 刘丽霞, 周淑清. 辽宁水稻穗型指数品种间差异及其与产量和品质的关系. 中国农业科学, 2005, 38: 1926-1930.
Xu Z J, Chen W F, Zhang S L, Zhang W Z, Ma D R, Liu L X, Zhou S Q. Differences of panicle trait index among varieties and its relationship with yield and quality of rice in Liaoning. Sci Agric Sin, 2005, 38: 1926-1930. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.at-2004-2569
[36] 王丹英, 章秀福, 朱智伟, 陈能, 闵捷, 姚青, 严建立, 廖西元. 食用稻米品质性状间的相关性分析. 作物学报, 2005, 31: 1086-1091.
Wang D Y, Zhang X F, Zhu Z W, Chen N, Min J, Yao Q, Yan J L, Liao X Y. Correlation analysis of rice grain quality characteristics. Acta Agron Sin, 2005, 31: 1086-1091. (in Chinese with English abstract)
[37] Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416: 701-702.
doi: 10.1038/416701a
[38] Gao H B, Wang W G, Wang Y H, Liang Y. Molecular mechanisms underlying plant architecture and its environmental plasticity in rice. Mol Breed, 2019, 39: 167.
doi: 10.1007/s11032-019-1076-2
[39] Wang B, Smith S M, Li J Y. Genetic regulation of shoot architecture. Annu Rev Plant Biol, 2018, 69: 437-468.
doi: 10.1146/annurev-arplant-042817-040422 pmid: 29553800
[40] Song X G, Lu Z F, Yu H, Shao G N, Xiong J S, Meng X B, Jing Y H, Liu G F, Xiong G S, Duan J B, Yao X F, Liu C M, Li H Q, Wang Y H, Li J Y. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Res, 2017, 27: 1128-1141.
doi: 10.1038/cr.2017.102
[41] Fang Z M, Ji Y Y, Hu J, Guo R K, Sun S Y, Wang X L. Strigolactones and brassinosteroids antagonistically regulate the stability of the D53-OsBZR1 complex to determine FC1expression in rice tillering. Mol Plant, 2020, 13: 586-597.
doi: 10.1016/j.molp.2019.12.005
[42] Tan L B, Li X R, Liu F X, Sun X Y, Li C G, Zhu Z F, Fu Y C, Cai H W, Wang X K, Xie D X, Sun C Q. Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet, 2008, 40: 1360-1164.
doi: 10.1038/ng.197 pmid: 18820699
[43] Yu B S, Lin Z W, Li H X, Li X J, Li J Y, Wang Y H, Zhang X, Zhu Z F, Zhai W X, Wang X K, Xie D X, Sun C Q. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J, 2007, 52: 891-898.
doi: 10.1111/j.1365-313X.2007.03284.x pmid: 17908158
[44] Zhang W F, Tan L B, Sun H Y, Zhao X H, Liu F X, Cai H W, Fu Y C, Sun X Y, Gu P, Zhu Z F, Sun C Q. Natural variations at TIG1 encoding a TCP transcription factor contribute to plant architecture domestication in rice. Mol Plant, 2019, 12: 1075-1089.
doi: 10.1016/j.molp.2019.04.005
[45] Zhang N, Yu H, Yu H, Cai Y Y, Huang L Z, Xu C, Xiong G S, Meng X B, Wang J Y, Chen H F, Liu G F, Jing Y H, Yuan Y D, Liang Y, Li S J, Smith S M, Li J Y, Wang Y H. A core regulatory pathway controlling rice tiller angle mediated by the LAZY1-dependent asymmetric distribution of Auxin. Plant Cell, 2018, 30: 1461-1475.
doi: 10.1105/tpc.18.00063
[46] Li P J, Wang Y H, Qian Q, Fu Z M, Wang M, Zeng D L, Li B H, Wang X J, Li J Y. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007, 17: 402-410.
doi: 10.1038/cr.2007.38
[47] Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M. The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell, 2005, 17: 2243-2254.
doi: 10.1105/tpc.105.030973 pmid: 15994910
[48] Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol, 2006, 24: 105-109.
doi: 10.1038/nbt1173 pmid: 16369540
[49] Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005, 17: 776-790.
doi: 10.1105/tpc.104.024950
[50] Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M. A rice brassinosteroid-deficient mutant, ebisudwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003, 15: 2900-2910.
doi: 10.1105/tpc.014712 pmid: 14615594
[51] Mori M, Nomura T, Ooka H, Ishizaka M, Yokota T, Sugimoto K, Okabe K, Kajiwara H, Satoh K, Yamamoto K, Hirochika H, Kikuchi S. Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol, 2002, 130: 1152-1161.
doi: 10.1104/pp.007179 pmid: 12427982
[52] Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 2000, 12: 1591-1606.
doi: 10.1105/tpc.12.9.1591 pmid: 11006334
[53] Li D, Wang L, Wang M, Xu Y Y, Luo W, Liu Y J, Xu Z H, Li J, Chong K. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnol J, 2009, 7: 791-806.
doi: 10.1111/pbi.2009.7.issue-8
[54] Zhang C, Xu Y Y, Guo S Y, Zhu J Y, Huan Q, Liu H H, Wang L, Luo G Z, Wang X J, Chong K. Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS Genet, 2012, 8: e1002686.
doi: 10.1371/journal.pgen.1002686
[55] Wang L, Xu Y Y, Zhang C, Ma Q B, Joo S H, Kim S K, Xu Z H, Chong K. OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PloS One, 2008, 3: e3521.
doi: 10.1371/journal.pone.0003521
[56] Bai M Y, Zhang L Y, Gampala S S, Zhu S W, Song W Y, Chong K, Wang Z Y. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci USA, 2007, 104: 13839-13844.
doi: 10.1073/pnas.0706386104
[57] Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M, Nomura T, Jiang C J, Dubouzet J G, Kikuchi S, Sekimoto H, Yokota T, Asami T, Kamakura T, Mori M. BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiol, 2009, 151: 669-680.
doi: 10.1104/pp.109.140806 pmid: 19648232
[58] Yang C, Shen W J, He Y, Tian Z H, Li J X. OVATE Family protein 8 positively mediates Brassinosteroid signaling through interacting with the GSK3-like Kinase in rice. PLoS Genet, 2016, 12: e1006118.
doi: 10.1371/journal.pgen.1006118
[59] Yoshikawa T, Ito M, Sumikura T, Nakayama A, Nishimura T, Kitano H, Yamaguchi I, Koshiba T, Hibara K I, Nagato Y, Itoh J I. The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin-related processes. Plant J, 2014, 78: 927-936.
doi: 10.1111/tpj.12517
[60] Zhang S W, Li C H, Cao J, Zhang Y C, Zhang S Q, Xia Y F, Sun D Y, Sun Y. Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/ OsGH3.13 activation. Plant Physiol, 2009, 151: 1889-1901.
doi: 10.1104/pp.109.146803
[61] Zhao S Q, Xiang J J, Xue H W. Studies on the rice LEAF INCLINATION1 (LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control. Mol Plant, 2013, 6: 174-187.
doi: 10.1093/mp/sss064
[62] Song Y L, You J, Xiong L Z. Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis. Plant Mol Biol, 2009, 70: 297-309.
doi: 10.1007/s11103-009-9474-1
[63] Bian H W, Xie Y K, Guo F, Han N, Ma S Y, Zeng Z H, Wang J H, Yang Y N, Zhu M Y. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytol, 2012, 196: 149-161.
doi: 10.1111/nph.2012.196.issue-1
[64] Attia K A, Abdelkhalik A F, Ammar M H, Wei C, Yang J S, Lightfoot D A, El-Sayed W M, El-Shemy H A. Antisense phenotypes reveal a functional expression of OsARF1, an auxin response factor, in transgenic rice. Curr Issues Mol Biol, 2009, 11(S1): i29-34.
[65] Chen S H, Zhou L J, Xu P, Xue H W. SPOC domain-containing protein Leaf inclination3 interacts with LIP1 to regulate rice leaf inclination through auxin signaling. PLoS Genet, 2018, 14: e1007829.
doi: 10.1371/journal.pgen.1007829
[66] Zhang S N, Wang S K, Xu Y X, Yu C L, Shen C J, Qian Q, Geisler M, Jiang D A, Qi Y H. The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1. Plant Cell Environ, 2015, 38: 638-654.
doi: 10.1111/pce.2015.38.issue-4
[67] Shimada A, Ueguchi-Tanaka M, Sakamoto T, Fujioka S, Takatsuto S, Yoshida S, Sazuka T, Ashikari M, Matsuoka M. The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. Plant J, 2006, 48: 390-402.
doi: 10.1111/j.1365-313X.2006.02875.x pmid: 17052323
[68] Ferrero-Serrano Á, Assmann S M. The alpha-subunit of the rice heterotrimeric G protein, RGA1, regulates drought tolerance during the vegetative phase in the dwarf rice mutant d1. J Exp Bot, 2016, 67: 3433-3443.
doi: 10.1093/jxb/erw183 pmid: 27194741
[69] Wang L, Wang Z, Xu Y Y, Joo S H, Kim S K, Xue Z, Xu Z H, Wang Z Y, Chong K. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J, 2009, 57: 498-510.
doi: 10.1111/tpj.2009.57.issue-3
[70] Wei L Y, Gu L F, Song X W, Cui X K, Lu Z K, Zhou M, Wang L L, Hu F Y, Zhai J X, Meyers B C, Cao X F. Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice. Proc Natl Acad Sci USA, 2014, 111: 3877-3882.
doi: 10.1073/pnas.1318131111
[71] Li Q F, Lu J, Zhou Y, Wu F, Tong H N, Wang J D, Yu J W, Zhang C Q, Fan X L, Liu Q Q. Abscisic acid represses rice lamina joint inclination by antagonizing brassinosteroid biosynthesis and signaling. Int J Mol Sci, 2019, 20: 4908.
doi: 10.3390/ijms20194908
[72] Gan L J, Wu H, Wu D P, Zhang Z F, Guo Z F, Yang N, Xia K, Zhou X, Oh K M, Matsuoka M, Ng D, Zhu C H. Methyl jasmonate inhibits lamina joint inclination by repressing brassinosteroid biosynthesis and signaling in rice. Plant Sci, 2015, 241: 238-245.
doi: 10.1016/j.plantsci.2015.10.012
[73] Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741-745.
doi: 10.1126/science.1113373 pmid: 15976269
[74] Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature, 2007, 445: 652-655.
doi: 10.1038/nature05504
[75] Li S Y, Zhao B, R Yuan D Y, Duan M J, Qian Q, Tang L, Wang B, Liu X Q, Zhang J, Wang J, Sun J Q, Liu Z, Feng Y Q, Yuan L P, Li C Y. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci USA, 2013, 110: 3167-3172.
doi: 10.1073/pnas.1300359110
[76] Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14promotes panicle branching and higher grain productivity in rice. Nat Genet, 2010, 42: 545-549.
doi: 10.1038/ng.592
[77] Jiao Y Q, Wang Y H, Xue D W, Wang J, Yan M X, Liu G F, Dong G J, Zeng D L, Lu Z F, Zhu X D, Qian Q, Li J Y. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 2010, 42: 541-544.
doi: 10.1038/ng.591
[78] Duan E C, Wang Y H, Li X H, Lin Q B, Zhang T, Wang Y P, Zhou C L, Zhang H, Jiang L, Wang J L, Lei C L, Zhang X, Guo X P, Wang H Y, Wan J M. OsSHI1 regulates plant architecture through modulating the transcriptional activity of IPA1in rice. Plant Cell, 2019, 31: 1026-1042.
doi: 10.1105/tpc.19.00023
[79] Wang S S, Wu K, Qian Q, Liu Q, Li Q, Pan Y J, Ye Y F, Liu X Y, Wang J, Zhang J Q, Li S, Wu Y J, Fu X D. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield. Cell Res, 2017, 27: 1142-1156.
doi: 10.1038/cr.2017.98
[80] Mao C Z, Ding W N, Wu Y R, Yu J, He X W, Shou H X, Wu P. Overexpression of a NAC-domain protein promotes shoot branching in rice. New Phytol, 2007, 176: 288-298.
doi: 10.1111/nph.2007.176.issue-2
[81] Wang L, Ming L C, Liao K Y, Xia C J, Sun S Y, Chang Y, Wang H K, Fu D B, Xu C H, Wang Z J, Li X, Xie W B, Ou-Yang Y D, Zhang Q L, Li X H, Zhang Q H, Xiao J H, Zhang Q F. Bract suppression regulated by the miR156/529-SPLs-NL1-PLA1 module is required for the transition from vegetative to reproductive branching in rice. Mol Plant, 2021, 14: 1168-1184.
doi: 10.1016/j.molp.2021.04.013 pmid: 33933648
[82] Shao G N, Lu Z F, Xiong J S, Wang B, Jing Y H, Meng X B, Liu G F, Ma H Y, Liang Y, Chen F, Wang Y H, Li J Y, Yu H. Tiller bud formation regulators MOC1 and MOC3 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice. Mol Plant, 2019, 12: 1090-1102.
doi: 10.1016/j.molp.2019.04.008
[83] Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano H Y. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development, 2004, 131: 5649-5657.
doi: 10.1242/dev.01441
[84] Chu H W, Qian Q, Liang W Q, Yin C S, Tan H X, Yao X, Yuan Z, Yang J, Huang H, Luo D, Ma H, Zhang D B. The floral organ number4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice. Plant Physiol, 2006, 142: 1039-1052.
doi: 10.1104/pp.106.086736
[85] Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development, 2003, 130: 3841-3850.
doi: 10.1242/dev.00564 pmid: 12835399
[86] Song S, Wang G F, Hu Y, Liu H Y, Bai X F, Qin R, Xing Y Z. OsMFT1 increases spikelets per panicle and delays heading date in rice by suppressing Ehd1, FZP and SEPALLATA-like genes. J Exp Bot, 2018, 69: 4283-4293.
doi: 10.1093/jxb/ery232 pmid: 30124949
[87] Fujita D, Trijatmiko K R, Tagle A G, Sapasap M V, Koide Y, Sasaki K, Tsakirpaloglou N, Gannaban R B, Nishimura T, Yanagihara S, Fukuta Y, Koshiba T, Slamet-Loedin I H, Ishimaru T, Kobayashi N. NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proc Natl Acad Sci USA, 2013, 110: 20431-20436.
doi: 10.1073/pnas.1310790110
[88] Takai T, Adachi S, Taguchi-Shiobara F, Sanoh-Arai Y, Iwasawa N, Yoshinaga S, Hirose S, Taniguchi Y, Yamanouchi U, Wu J Z, Matsumoto T, Sugimoto K, Kondo K, Ikka T, Ando T, Kono I, Ito S, Shomura A, Ookawa T, Hirasawa T, Yano M, Kondo M, Yamamoto T. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci Rep, 2013, 3: 2149.
doi: 10.1038/srep02149
[89] Wu Y, Wang Y, Mi X F, Shan J X, Li X M, Xu J L, Lin H X. The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems. PLoS Genet, 2016, 12: e1006386.
doi: 10.1371/journal.pgen.1006386
[90] Yoshida A, Sasao M, Yasuno N, Takagi K, Daimon Y, Chen R H, Yamazaki R, Tokunaga H, Kitaguchi Y, Sato Y, Nagamura Y, Ushijima T, Kumamaru T, Iida S, Maekawa M, Kyozuka J. TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition. Proc Natl Acad Sci USA, 2013, 110: 767-772.
doi: 10.1073/pnas.1216151110 pmid: 23267064
[91] Chen H, Tang Y Y, Liu J F, Tan L B, Jiang J H, Wang M M, Zhu Z F, Sun X Y, Sun C Q. Emergence of a novel chimeric gene underlying grain number in rice. Genetics, 2017, 205: 993-1002.
doi: 10.1534/genetics.116.188201 pmid: 27986805
[92] Choi D, Kim J H, Kende H. Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.). Plant Cell Physiol, 2004, 45: 897-904.
doi: 10.1093/pcp/pch098
[93] Gao F, Wang K, Liu Y, Chen Y P, Chen P, Shi Z Y, Luo J, Jiang D L, Fan F F, Zhu Y G, Li S Q. Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat Plants, 2015, 2: 15196.
doi: 10.1038/nplants.2015.196
[94] Guo T, Chen K, Dong N Q, Shi C L, Ye W W, Gao J P, Shan J X, Lin H X. GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell, 2018, 30: 871-888.
doi: 10.1105/tpc.17.00959
[95] Si L Z, Chen J Y, Huang X H, Gong H, Luo J H, Hou Q Q, Zhou T Y, Lu T T, Zhu J J, Shang-Guan Y Y, Chen E W, Gong C X, Zhao Q, Jing Y F, Zhao Y, Li Y, Cui L L, Fan D L, Lu Y Q, Weng Q J, Wang Y C, Zhan Q L, Liu K Y, Wei X H, An K, An G, Han B. OsSPL13 controls grain size in cultivated rice. Nat Genet, 2016, 48: 447-456.
doi: 10.1038/ng.3518
[96] Huo X, Wu S, Zhu Z F, Liu F X, Fu Y C, Cai H W, Sun X Y, Gu P, Xie D X, Tan L B, Sun C Q. NOG1 increases grain production in rice. Nat Commun, 2017, 8: 1497.
doi: 10.1038/s41467-017-01501-8
[97] Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009, 41: 494-497.
doi: 10.1038/ng.352
[98] Xu Q, Xu N, Xu H, Tang L, Liu J, Sun J, Wang J Y. Breeding value estimation of the application of IPA1 and DEP1 to improvement of Oryza sativa L. ssp. japonica in early hybrid generations. Mol Breed, 2014, 34: 1933-1942.
doi: 10.1007/s11032-014-0150-z
[99] Xu H, Zhao M H, Zhang Q, Xu Z J, Xu Q. The DENSE AND ERECT PANICLE 1 (DEP1) gene offering the potential in the breeding of high-yielding rice. Breed Sci, 2016, 66: 659-667.
doi: 10.1270/jsbbs.16120
[100] Cui Y, Jiang N, Xu Z J, Xu Q. Heterotrimeric G protein are involved in the regulation of multiple agronomic traits and stress tolerance in rice. BMC Plant Biol, 2020, 20: 90.
doi: 10.1186/s12870-020-2289-6 pmid: 32111163
[101] Li F, Liu W B, Tang J Y, Chen J F, Tong H N, Hu B, Li C L, Fang J, Chen M S, Chu C C. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Res, 2010, 20: 838-849.
doi: 10.1038/cr.2010.69
[102] Qiao Y L, Piao R H, Shi J X, Lee S I, Jiang W Z, Kim B K, Lee J, Han L Z, Ma W B, Koh H J. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theor Appl Genet, 2011, 122: 1439-1449.
doi: 10.1007/s00122-011-1543-6
[103] Piao R H, Jiang W Z, Ham T H, Choi M S, Qiao Y L, Chu S H, Park J H, Woo M O, Jin Z X, An G, Lee J, Koh H J. Map-based cloning of the ERECT PANICLE 3 gene in rice. Theor Appl Genet, 2009, 119: 1497-1506.
doi: 10.1007/s00122-009-1151-x
[104] Jiang G H, Xiang Y H, Zhao J Y, Yin D D, Zhao X F, Zhu L H, Zhai W X. Regulation of inflorescence branch development in rice through a novel pathway involving the pentatricopeptide repeat protein sped1-D. Genetics, 2014, 197: 1395-1407.
doi: 10.1534/genetics.114.163931 pmid: 24950892
[105] Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J, 2007, 51: 1030-1040.
doi: 10.1111/j.1365-313X.2007.03200.x
[106] Kyozuka J, Konishi S, Nemoto K, Izawa T, Shimamoto K. Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation. Proc Natl Acad Sci USA, 1998, 95: 1979-1982.
doi: 10.1073/pnas.95.5.1979 pmid: 9482818
[107] Li S B, Qian Q, Fu Z M, Zeng D L, Meng X B, Kyozuka J, Maekawa M, Zhu X D, Zhang J, Li J Y, Wang Y H. Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant J, 2009, 58: 592-605.
doi: 10.1111/tpj.2009.58.issue-4
[108] Gao X Q, Chen Z H, Zhang J, Li X W, Chen G X, Li X H, Wu C Y. OsLIS-L1 encoding a lissencephaly type-1-like protein with WD40 repeats is required for plant height and male gametophyte formation in rice. Planta, 2012, 235: 713-727.
doi: 10.1007/s00425-011-1532-7
[109] 徐海, 孙健, 徐铨, 潘国君, 周广春, 张忠旭, 孙玥, 徐正进, 陈温福. 北方粳稻优化穗部性状和籼型血缘改良品质研究进展. 科学通报, 2022, 67: 135-142.
Xu H, Sun J, Xu Q, Pan G J, Zhou G C, Zhang Z X, Sun Y, Xu Z J, Chen W F. Research progress on optimizing panicle characters and quality improvement of indica pedigree in northern japonica rice. Chin Sci Bull, 2022, 67: 135-142. (in Chinese with English abstract)
doi: 10.1360/TB-2021-0946
[110] 游修龄. 中韩出土古稻引发的稻作起源及籼粳分化问题. 农业考古, 2002, (1): 101-103.
You X L. Issues on origin of rice cultivation and differentiation of xian and geng subspecies caused by ancient rice unearthed in China and South Korea. Agric Archaeol, 2002, (1): 101-103. (in Chinese)
[111] 松尾孝嶺. 稻学大成第3卷:遗伝编. 1990. pp 197-198.
Matsuo T M. Great Achievement of Rice Science, Vol. 3: Genetics. 1990. pp 197-198. (in Japanese)
[112] van der Bom F J T, Williams A, Bell M J. Root architecture for improved resource capture: trade-offs in complex environments. J Exp Bot, 2020, 71: 5752-5763.
doi: 10.1093/jxb/eraa324 pmid: 32667996
[113] 李龙, 李超男, 毛新国, 王景一, 景蕊莲. 作物根系表型鉴定评价方法的现状与展望. 中国农业科学, 2022, 55: 425-437.
doi: 10.3864/j.issn.0578-1752.2022.03.001
Li L, Li C N, Mao X G, Wang J Y, Jing R L. Advances and perspectives of approaches to phenotyping crop root system. Sci Agric Sin, 2022, 55: 425-437. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2022.03.001
[114] 兰金松, 庄慧. 水稻株型分子机理研究进展. 中国水稻科学, 2023, [2023-07-09]
Lan J S, Zhuang H. Advances in the molecular mechanism of rice molecular breeding with plant type. Chin J Rice Sci, 2023, [2023-07-09] . (in Chinese with English abstract)
[1] JIA Lu-Qi, SUN You, TIAN Ran, ZHANG Xue-Fei, DAI Yong-Dong, CUI Zhi-Bo, LI Yang-Yang, FENG Xin-Yu, SANG Xian-Chun, WANG Xiao-Wen. Identification of the rgs1 mutant with rapid germination of seed and isolation of the regulated gene in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2288-2295.
[2] TANG Jie, LONG Tuan, WU Chun-Yu, LI Xin-Peng, ZENG Xiang, WU Yong-Zhong, HUANG Pei-Jin. Identification of OsGMS2 and construction of seed production system for genic male sterile line in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2025-2038.
[3] WEI Xin-Yu, ZENG Yue-Hui, YANG Wang-Xing, XIAO Chang-Chun, HOU Xin-Po, HUANG Jian-Hong, ZOU Wen-Guang, XU Xu-Ming. Development of high-quality fragrant indica CMS line by editing Badh2 gene using CRISPR-Cas9 technology in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(8): 2144-2159.
[4] CHEN Ting, JIAO Yan-Yang, ZHOU Xin-Ye, WU Lin-Kun, ZHANG Zhong-Yi, LIN Yu, LIN Sheng, LIN Wen-Xiong. Effects of different soil intensification treatments on growth and development of Radix pseudostellariae in continuous cropping system [J]. Acta Agronomica Sinica, 2023, 49(8): 2225-2239.
[5] DENG Ai-Xing, LI Ge-Xing, LYU Yu-Ping, LIU You-Hong, MENG Ying, ZHANG Jun, ZHANG Wei-Jian. Effect of shading duration after heading on grain yield and quality of japonica rice in northwest China [J]. Acta Agronomica Sinica, 2023, 49(7): 1930-1941.
[6] LIN Xiao-Xin, HUANG Ming-Jiang, WEI Yi, ZHU Hong-Hui, WANG Zi-Yi, LI Zhong-Cheng, ZHUANG Hui, LI Yan-Xi, LI Yun-Feng, CHEN Rui. Identification and gene mapping of long grain and degenerated palea (lgdp) in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1699-1707.
[7] XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642.
[8] DING Jie-Rong, MA Ya-Mei, PAN Fa-Zhi, JIANG Li-Qun, HUANG Wen-Jie, SUN Bing-Rui, ZHANG Jing, LYU Shu-Wei, MAO Xing-Xue, YU Hang, LI Chen, LIU Qing. Ubiquitin receptor protein OsDSK2b plays a negative role in rice leaf blast resistance and osmotic stress tolerance [J]. Acta Agronomica Sinica, 2023, 49(6): 1466-1479.
[9] HE Yong-Ming, ZHANG Fang. Study of regulating effect of auxin on floret opening in rice [J]. Acta Agronomica Sinica, 2023, 49(6): 1690-1698.
[10] TAO Yue-Yue, SHENG Xue-Wen, XU Jian, SHEN Yuan, WANG Hai-Hou, LU Chang-Ying, SHEN Ming-Xing. Characteristics of heat and solar resources allocation and utilization in rice- oilseed rape double cropping systems in the Yangtze River Delta [J]. Acta Agronomica Sinica, 2023, 49(5): 1327-1338.
[11] WEI Hai-Min, TAO Wei-Ke, ZHOU Yan, YAN Fei-Yu, LI Wei-Wei, DING Yan-Feng, LIU Zheng-Hui, LI Gang-Hua. Panicle silicon fertilizer optimizes the absorption and distribution of mineral elements in rice (Oryza sativa L.) in coastal saline-alkali soil to improve salt tolerance [J]. Acta Agronomica Sinica, 2023, 49(5): 1339-1349.
[12] LIU Er-Hua, ZHOU Guang-Sheng, WU Bing-Yi, SONG Yan-Ling, HE Qi-Jin, LYU Xiao-Min, ZHOU Meng-Zi. Response of reproductive growth period length to climate warming and technological progress in the middle and lower reaches of the Yangtze River during 1981-2010 in single-cropping rice [J]. Acta Agronomica Sinica, 2023, 49(5): 1305-1315.
[13] DAI Wen-Hui, ZHU Qi, ZHANG Xiao-Fang, LYU Shen-Yang, XIANG Xian-Bo, MA Tao, CHEN Yu-Jie, ZHU Shi-Hua, DING Wo-Na. Identification and gene mapping of brittle culm mutant bc21 in rice [J]. Acta Agronomica Sinica, 2023, 49(5): 1426-1431.
[14] ZHANG Chen-Hui, ZHANG Yan, LI Guo-Hui, YANG Zi-Jun, ZHA Ying-Ying, ZHOU Chi-Yan, XU Ke, HUO Zhong-Yang, DAI Qi-Gen, GUO Bao-Wei. Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice [J]. Acta Agronomica Sinica, 2023, 49(4): 1039-1051.
[15] TANG Wen-Qiang, ZHANG Wen-Long, ZHU Xiao-Qiao, DONG Bi-Zheng, LI Yong-Cheng, YANG Nan, ZHANG Yao, WANG Yun-Yue, HAN Guang-Yu. Effects of diverse mixture intercropping on the structure and function of bacterial communities in rice rhizosphere [J]. Acta Agronomica Sinica, 2023, 49(4): 1111-1121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .