Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (11): 3100-3109.doi: 10.3724/SP.J.1006.2023.21070

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of interaction of nitrogen level and sowing rate on yield, growth, and ecological field characteristics of winter wheat

ZHOU Qi(), LI Lan-Tao, ZHANG Lu-Lu, MIAO Yu-Hong, WANG Yi-Lun()   

  1. College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, Henan, China
  • Received:2022-11-04 Accepted:2023-02-21 Online:2023-11-12 Published:2023-03-07
  • Supported by:
    14th Five-Year National Key Research and Development Program of China(2021YFD1901001-08)

Abstract:

The objective of this study is to study the effects of different nitrogen level and sowing rate on the yield, growth and development, and ecological field characteristics of winter wheat, to explore the relationships between the wheat population competitiveness and its yield based on the ecological field theory, and to find a balance between nitrogen level and sowing dates for high yield and high efficiency in winter wheat. Field experiments were established as a split-plot design of five nitrogen levels (0, 90, 180, 270, and 360 kg hm-2) and four sowing rates (135, 180, 225, and 270 kg hm-2) from 2020 to 2022 at Wen County, Henan Province. The grain yield, nitrogen accumulation, growth and development indexes (i.e., plant height, crown width, and tillering) were measured and calculated for the aforementioned treatments. Results showed that the optimal sowing rate were both 225 kg hm-2 for the two growing seasons, and the correspondingly nitrogen rates were 270 kg hm-2 and 180 kg hm-2, respectively, which achieving the highest grain yield. Compared to the other treatments, the yield increased by 7.5% and 18.1% with the optimal nitrogen and sowing rate treatment combinations. Moreover, nitrogen accumulation increased by 57.3% for nitrogen application treatments, and the potential energy of growth was increased by 72.7%. However, the tillering increased by 34.7%, and the development level per plant decreased with the sowing rates increased, the potential energy of growth decreased by 11.4%. Plant height and crown width were also significantly influenced by nitrogen level and the sowing rate. Compared to the 135 kg hm-2 sowing rate and without nitrogen, the scope of ecological field increased by 23.0% in the other treatments. The relationship between winter wheat population ecological field area and yield was a quadratic function. When nitrogen was applied and seeding rate was increased, the population ecological field area of winter wheat increased by 116.7% and 52.5%, respectively. The appropriate N level and sowing rate in winter wheat for improved growth, yield, and ecological field characteristics in the experimental area was 239.8 kg N hm-2 and 228.7 kg hm-2, respectively, which could be extended to the application in the northern of Henan.

Key words: winter wheat, nitrogen fertilizer, sowing rate, yield, ecological field, interact with each other

Table 1

Physical-chemical properties of the experimental soils"

年份
Year
有机质
Organic matter (g kg-1)
全氮
Total N (g kg-1)
有效磷
Available P (mg kg-1)
速效钾
Available K (mg kg-1)
2021 14.75 0.50 16.43 171.88
2022 9.45 0.49 17.42 175.31

Table 2

Seedling emergence with different sowing rate (×106 plants hm-2)"

年份
Year
播种量Sowing rate (kg hm-2)
135 (D1) 180 (D2) 225 (D3) 270 (D4)
2021 2.01 3.02 3.81 4.55
2022 2.23 2.79 3.27 3.87

Fig. 1

Effects of N rate and sowing rate on winter wheat yield"

Fig. 2

Effects of N rate and sowing rate on nitrogen accumulation in the aboveground of winter wheat at mature stage N0, N90, N180, N270, and N360 denote nitrogen fertilizer application of 0, 90, 180, 270, and 360 kg hm-2. D1, D2, D3, and D4 denote sowing rate of 135, 180, 225, and 270 kg hm-2. Different lowercases of the same seeding rates mean significant differences among different N treatments at the 5% probability level."

Table 3

Effects of N rate and sowing rate on winter wheat growth index in 2021"

处理
Treatment
越冬期 Z18
Overwintering stage
拔节期 Z31
Jointing stage
扬花期 Z60
Flowering stage
播种量
Sowing rate
施氮量
N rate
株高
Plant height
(mm)
冠幅
Canopy width
(cm)
株高
Plant height
(cm)
冠幅
Canopy width
(cm)
单株分蘖
Tillering
株高
Plant height
(cm)
冠幅
Canopy width
(cm)
单株分蘖
Tillering
D1 N0 31.7 b 24.2 a 9.4 b 29.3 a 2.7 b 75.3 a 23.6 b 2.2 b
N90 33.6 ab 24.8 a 10.8 ab 30.5 a 2.8 b 76.6 a 27.0 ab 2.6 a
N180 33.8 ab 25.4 a 11.0 a 31.5 a 3.3 ab 80.8 a 27.5 a 2.7 a
N270 35.5 a 22.4 a 11.5 a 31.5 a 3.3 ab 80.8 a 27.7 a 2.6 a
N360 36.4 a 25.0 a 10.3 ab 31.3 a 3.4 a 80.2 a 27.9 a 2.5 a
D2 N0 32.2 c 23.7 a 10.7 a 31.3 a 2.6 b 77.2 a 21.7 c 1.6 c
N90 35.1 bc 24.3 a 10.9 a 31.4 a 3.3 a 78.7 a 23.2 bc 1.8 ab
N180 37.6 ab 24.8 a 11.2 a 32.2 a 3.4 a 80.9 a 23.9 bc 1.9 a
N270 39.4 a 23.7 a 11.6 a 32.5 a 3.0 ab 81.4 a 24.8 b 1.9 a
N360 40.2 a 23.5 a 11.0 a 33.1 a 2.7 b 80.3 a 27.5 a 1.7 b
D3 N0 33.0 c 23.6 a 10.8 b 30.6 b 2.2 b 78.2 a 21.3 c 1.3 b
N90 36.1 b 23.9 a 11.0 ab 30.9 b 2.3 b 79.0 a 23.1 b 1.5 ab
N180 38.5 ab 24.3 a 11.2 ab 32.3 a 2.3 b 81.3 a 23.7 ab 1.6 a
N270 40.1 a 22.3 a 12.0 a 31.1 b 2.8 a 82.6 a 23.8 ab 1.7 a
N360 40.2 a 22.1 a 10.7 b 31.0 b 2.4 b 81.5 a 24.8 a 1.6 ab
D4 N0 32.5 d 23.3 a 10.8 a 29.6 b 2.5 a 78.2 a 18.7 c 1.1 b
N90 35.5 c 23.6 a 12.0 a 31.5 ab 2.7 a 80.3 a 22.7 b 1.4 a
N180 37.8 b 23.8 a 12.1 a 32.5 a 2.9 a 82.8 a 23.5 ab 1.4 a
N270 38.5 ab 25.2 a 12.2 a 33.0 a 2.8 a 83.1 a 23.6 ab 1.5 a
N360 40.6 a 22.4 a 10.9 a 32.0 ab 2.6 a 82.1 a 24.4 a 1.4 a

Fig. 3

Effects of N rate and sowing rate on individual ecological potential of winter wheat Treatments are the same as those given in Fig. 2. Z18, Z31, and Z60 correspond to the overwintering stage, jointing stage, and flowering stages of winter wheat (Zadoks standard)."

Fig. 4

Relationship between ecological field and yield of winter wheat under different N rate and sowing rate Z18, Z31, and Z60 correspond to the overwintering stage, jointing stage, and flowering stages of winter wheat (Zadoks standard)."

[1] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2021.
National Bureau of Statistics of China. China Statistics Yearbook. Beijing: China Statistics Press, 2021 (in Chinese).
[2] 陈源源, 孙艺. 未来30年我国粮食增产潜力与保障能力研究. 四川农业大学学报, 2022, 40: 312-318.
Chen Y Y, Sun Y. Study on the production increasing potential and guarantee capability of grain in China in the next 30 years. J Sichuan Agric Univ, 2022, 40: 312-318 (in Chinese with English abstract).
[3] 赵广才, 常旭虹, 杨玉双, 李振华, 于广军, 李辉利. 冬小麦高产高效应变栽培技术研究. 麦类作物学报, 2009, 29: 690-695.
Zhao G C, Chang X H, Yang Y S, Li Z H, Yu G J, Li H L. Study on high yield, high efficiency and adapting cultivating technology in winter wheat. J Triticeae Crops, 2009, 29: 690-695 (in Chinese with English abstract).
[4] 巨晓棠, 张翀. 论合理施氮的原则和指标. 土壤学报, 2021, 58(1): 1-13.
Ju X T, Zhang C. The principles and indicators of rational N fertilization. Acta Pedol Sin, 2021, 58(1): 1-13 (in Chinese with English abstract).
[5] 张文静, 江东国, 黄正来, 周晓楠, 马尚宇, 米璐, 韩笑. 氮肥施用对稻茬小麦冠层结构及产量、品质的影响. 麦类作物学报, 2018, 38: 164-174.
Zhang W J, Jiang D G, Huang Z L, Zhou X N, Ma S Y, Mi L, Han X. Effects of nitrogen fertilizer application on canopy structure traits, grain yield and quality of wheat after rice. J Triticeae Crops, 2018, 38: 164-174 (in Chinese with English abstract).
[6] 陈雨海, 余松烈, 于振文. 小麦生长后期群体光截获量及其分布与产量的关系. 作物学报, 2003, 29: 730-734.
Chen Y H, Yu S L, Yu Z W. Relationship between amount or distribution of PAR interception and grain output of wheat communities. Acta Agron Sin, 2003, 29: 730-734 (in Chinese with English abstract).
[7] 田纪春, 邓志英, 胡瑞波, 王延训. 不同类型超级小麦产量构成因素及籽粒产量的通径分析. 作物学报, 2006, 32: 1699-1705.
Tian J C, Deng Z Y, Hu R B, Wang Y X. Yield components of super wheat cultivars with different types and the path coefficient analysis on grain yield. Acta Agron Sin, 2006, 32: 1699-1705 (in Chinese with English abstract).
[8] 李豪圣, 宋健民, 刘爱峰, 程敦公, 王西芝, 杜长林, 赵振东, 刘建军. 播期和种植密度对超高产小麦济麦22产量及其构成因素的影响. 中国农学通报, 2011, 27(5): 243-248.
Li H S, Song J M, Liu A F, Cheng D G, Wang X Z, Du C L, Zhao Z D, Liu J J. Effect of sowing time and planting density on yield and components of ‘Jimai 22’ with super-high yield. Chin Agric Sci Bull, 2011, 27(5): 243-248 (in Chinese with English abstract).
[9] 于振文, 田奇卓, 潘庆民, 岳寿松, 王东, 段藏禄, 段玲玲, 王志军, 牛运生. 黄淮麦区冬小麦超高产栽培的理论与实践. 作物学报, 2002, 28: 577-585.
Yu Z W, Tian Q Z, Pan Q M, Yue S S, Wang D, Duan Z L, Duan L L, Wang Z J, Niu Y S. Theory and practice on cultivation of super high yield of winter wheat in the wheat fields of Yellow River and Huaihe River districts. Acta Agron Sin, 2002, 28: 577-585 (in Chinese with English abstract).
[10] 张黛静, 马雪, 王晓东, 杨杰瑞, 王多多, 王真, 陈惠婷, 李春喜. 品种与密度对豫中地区小麦光合生理特性及光能利用率的影响. 麦类作物学报, 2014, 34: 388-394.
Zhang D J, Ma X, Wang X D, Yang J R, Wang D D, Wang Z, Chen H T, Li C X. Effects of variety and density on photosynthetic traits and light utilization efficiency of wheat in middle Henan province. J Triticeae Crops, 2014, 34: 388-394 (in Chinese with English abstract).
[11] 梁书荣, 赵会杰, 李洪岐, 王俊忠, 王林华, 曲小菲, 吕淑敏. 密度、 种植方式和品种对夏玉米群体发育特征的影响. 生态学报, 2010, 30: 1927-1931.
Liang S R, Zhao H J, Li H Q, Wang J Z, Wang L H, Qu X F, Lyu S M, Effects of planting densities and modes on developmental characteristics of summer maize populations in two varieties. Acta Ecol Sin, 2010, 30: 1927-1931 (in Chinese with English abstract).
[12] 刘万代, 陈现勇, 尹钧, 杜沛鑫. 播期和密度对冬小麦豫麦49-198群体性状和产量的影响. 麦类作物学报, 2009, 29: 464-469.
Liu W D, Chen X Y, Yin J, Du P X. Effect of sowing date and planting density on population trait and grain yield of winter wheat cultivar Yumai 49-198. J Triticeae Crops, 2009, 29: 464-469 (in Chinese with English abstract).
[13] Jahanzad E, Jorat M, Moghadam H, Sadeghpour A, Chaichi M R, Dashtaki M. Response of a new and a commonly grown forage sorghum cultivar to limited irrigation and planting density. Agric Water Manag, 2013, 117: 62-69.
doi: 10.1016/j.agwat.2012.11.001
[14] 马尚宇, 王艳艳, 刘雅男, 姚科郡, 黄正来, 张文静, 樊永惠, 马元山. 播期、 播量和施氮量对小麦干物质积累、转运和分配及产量的影响. 中国生态农业学报, 2020, 28: 375-385.
Ma S Y, Wang Y Y, Liu Y N, Yao K J, Huang Z L, Zhang W J, Fan Y H, Ma Y S. Effect of sowing date, planting density, and nitrogen application on dry matter accumulation, transfer, distribution, and yield of wheat. Chin J Eco-Agric, 2020, 28: 375-385 (in Chinese with English abstract).
[15] 祝庆. 密度和氮肥互作对稻茬晚播小麦产量和品质的影响. 南京农业大学硕士学位论文,江苏南京, 2019.
Zhu Q. Effects of Interaction of Planting Density and Nitrogen Fertilizer on Yield and Quality of Late-Sown Wheat Following Rice. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2019 (in Chinese with English abstract).
[16] 张小涛. 施氮量和播种量互作对不同基因型冬小麦植株氮浓度、群体动态及产量的影响. 河南农业大学硕士学位论文,河南郑州, 2017.
Zhang X T. Combined Effect of Nitrogen Level and Seeding Rate on Nitrogen Concentration, Population and Grain Yield in Different Winter Wheat Cultivars. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2017 (in Chinese with English abstract).
[17] 邹锐. 生态场理论及生态场特性. 生态学杂志, 1995, (1): 49-53.
Zou R. Theory and characteristics of ecological field. Chin J Ecol, 1995, (1): 49-53 (in Chinese with English abstract).
[18] 王根轩. 生态场理论. 地球科学进展, 1993, (6): 76-78.
Wang G X. Ecological field theory. Adv Earth Sci, 1993, (6): 76-78 (in Chinese).
[19] 王根轩, 赵松岭. 半干旱生态条件下植物个体的综合生态效应的空间距离分布规律. 生态学报, 1993, (1): 58-66.
Wang G X, Zhao S L. The spatial distribution of the synthetical ecological effect of plant individuals under semi-arid ecological conditions. Acta Ecol Sin, 1993, (1): 58-66 (in Chinese with English abstract).
[20] 宋萍. 濒危植物桫椤种群生态学与生态场特性研究. 福建农林大学硕士学位论文,福建福州, 2004.
Song P. Studies on the Population Ecology and Ecological Field Characteristics of Endangered Plant Alsophila spinulosa. MS Thesis of Fujian Agricultural and Forestry University, Fuzhou, Fujian, China, 2004 (in Chinese with English abstract).
[21] 卢殿君. 华北平原冬小麦高产高效群体动态特征与氮营养调控. 中国农业大学博士学位论文,北京, 2015.
Lu D J. Dynamics of Population Trait for High Yielding and High Efficiency Winter Wheat and N Nutrient Regulation in the North China Plain. PhD Dissertation of China Agricultural University,Beijing, China, 2015 (in Chinese with English abstract).
[22] 马常宝, 卢昌艾, 任意, 展晓莹, 李桂花, 张淑香. 土壤地力和长期施肥对潮土区小麦和玉米产量演变趋势的影响. 植物营养与肥料学报, 2012, 18: 796-802.
Ma C B, Lu C A, Ren Y, Zhan X Y, Li G H, Zhang S X. Effect of soil fertility and long-term fertilizer application on the yields of wheat and maize in Fluvo-aquic soil. Plant Nutr Fert Sci, 2012, 18: 796-802 (in Chinese with English abstract).
[23] 曲文凯, 徐学欣, 赵金科, 刘帅, 郝天佳, 贾靖, 曹志浩, 李柯煜, 赵长星. 施氮对滴灌冬小麦花后光合生理、灌浆特性及产量品质的影响. 水土保持学报, 2022, 36: 327-336.
Qu W K, Xu X X, Zhao J K, Liu S, Hao T J, Jia J, Cao Z H, Li K Y, Zhao C X. Effect of nitrogen application on photosynthetic physiology, grain-filling characteristics and yield and quality after anthesis of winter wheat under drip irrigation. J Soil Water Conserv, 2022, 36: 327-336 (in Chinese with English abstract).
[24] 史晓芳, 仇松英, 史忠良, 谢福来, 高炜, 宋立红. 播期和播量对冬小麦尧麦16群体性状和产量的影响. 麦类作物学报, 2017, 37: 357-365.
Shi X F, Qiu S Y, Shi Z L, Xie F L, Gao W, Song L H. Effect of sowing date and sowing amount on population traits and yield of winter wheat cultivar Yaomai 16. J Triticeae Crops, 2017, 37: 357-365 (in Chinese with English abstract).
[25] 杨健, 张保军, 毛建昌, 马婧, 冯海平, 王惠萍, 张玉礼, 王栋. 播期与密度对冬小麦西农9871籽粒产量的影响. 麦类作物学报, 2011, 31: 529-534.
Yang J, Zhang B J, Mao J C, Ma J, Feng H P, Wang H P, Zhang Y L, Wang D. Effects of sowing date and planting density on grain yield in winter wheat Xinong 9871. J Triticeae Crops, 2011, 31: 529-534 (in Chinese with English abstract).
[26] 淮贺举, 陆洲, 秦向阳, 李奇峰, 于莹, 臧辰龙. 种植密度对小麦产量和群体质量影响的研究进展. 中国农学通报, 2013, 29(9): 1-4.
Huai H J, Lu Z, Qin X Y, Li Q F, Yu Y, Zang C L. Advances of researches in plant density effects on the wheat yield and population quality. Chin Agri Sci Bull, 2013, 29(9): 1-4 (in Chinese with English abstract).
[27] Simmons S R, Rasmusson D C, Wiersma J V. Tillering in barley: genotype, row spacing, and seeding rate effects 1. Crop Sci, 1982, 22: 801-805.
doi: 10.2135/cropsci1982.0011183X002200040024x
[28] 童依平, 李继云, 李振声. 不同小麦品种吸收利用氮素效率的差异及有关机理研究: I.吸收和利用效率对产量的影响. 西北植物学报, 1999, 19: 270-277.
Dong Y P, Li J Y, Li Z S. Genotypic variations for nitrogen use efficiency in winter wheat: I.Effects of N uptake and utilization efficiency on grain yields. Acta Bot Boreali-Occident Sin, 1999, 19: 270-277 (in Chinese with English abstract).
[29] 王树丽. 播期和种植密度对小麦群体结构与氮素利用效率的影响. 山东农业大学硕士学位论文,山东泰安, 2012.
Wang S L. Effects of Sowing Date and Planting Density on Canopy Structure and Nitrogen Utilization Efficiency of Winter Wheat. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2012 (in Chinese with English abstract).
[30] 蒋龙刚. 基于土壤有机质供氮能力推荐的旱地小麦施氮方法研究. 西北农林科技大学硕士学位论文,陕西杨凌, 2020.
Jiang L G. Research on Recommended Nitrogen Fertilizer Application Method Based on Soil Organic Matter in Dryland Wheat Production. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2020 (in Chinese with English abstract).
[31] 李菊梅, 王朝辉, 李生秀. 有机质、全氮和可矿化氮在反映土壤供氮能力方面的意义. 土壤学报, 2003, 40: 232-238.
Li J M, Wang Z H, Li S X. Significance of soil organic matter, total N and mineralizable nitrogen in reflecting soil N supplying capacity. Acta Pedol Sin, 2003, 40: 232-238 (in Chinese with English abstract).
[32] Yin X Y, Goudriaan J, Lantinga E A, Vos J, Spiertz H J. A flexible sigmoid function of determinate growth. Ann Bot (London), 2003, 91: 361-371.
doi: 10.1093/aob/mcg029
[33] 李春杰. 种内/种间互作调控小麦/蚕豆间作体系作物生长与氮磷吸收的机制. 中国农业大学博士学位论文,北京, 2018.
Li C J. The Mechanisms of Intra and Interspecific Interaction on Regulating Growth and N/P Acquisition by Intercropped Wheat and Faba Bean. PhD Dissertation of China Agricultural University,Beijing, China, 2018 (in Chinese with English abstract).
[34] 侯振伟. 不同种植密度下补灌对小麦分蘖成穗和产量的调控及其生理基础. 山东农业大学硕士学位论文,山东泰安, 2022.
Hou Z W. Regulation and Physiological Basis of Supplemental Irrigation on Tillering, Tillering and Yield of Wheat at Different Planting Densities. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2022 (in Chinese with English abstract).
[35] 唐兴旺, 骆兰平, 于振文, 石玉. 不同产量潜力品种小麦群体动态和干物质积累特性的差异. 山东农业科学, 2020, 52(3): 29-33.
Tang X W, Luo L P, Yu Z W, Shi Y. Differences in population dynamics and dry matter accumulation characteristics of wheat varieties with different yield potential. Shandong Agric Sci, 2020, 52(3): 29-33 (in Chinese with English abstract).
[36] Ye Y L, Wang G L, Huang Y F, Zhu Y J, Meng Q F, Chen X P, Zhang F S, Cui Z L. Understanding physiological processes associated with yield-trait relationships in modern wheat varieties. Field Crops Res, 2011, 124: 316-322.
doi: 10.1016/j.fcr.2011.06.023
[37] 崔维佳, 常志云, 李宁. 干旱胁迫对冬小麦生态、光合、产量及光谱特征的影响. 山西农业科学, 2013, 41: 1314-1318.
Cui W J, Chang Z Y, Li N. Influence of drought stress on ecological, photosynthetic, yield and reflectivity characteristics in winter wheat. Shanxi Agric Sci, 2013, 41: 1314-1318 (in Chinese with English abstract).
[38] 李金才, 尹钧, 魏凤珍. 播种密度对冬小麦茎秆形态特征和抗倒指数的影响. 作物学报, 2005, 31: 662-666.
Li J C, Yin J, Wei F Z. Effects of planting density on characters of culm and culm lodging resistant index in winter wheat. Acta Agron Sin, 2005, 31: 662-666 (in Chinese with English abstract).
[39] 王成雨. 氮肥水平和种植密度对冬小麦冠层结构与功能的影响. 山东农业大学博士学位论文,山东泰安, 2011.
Wang C Y. Effects of Nitrogen Rate and Plant Density on Canopy Architecture and Its Function in Winter Wheat. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2011 (in Chinese with English abstract).
[40] Walker J, Sharpe P J H, Penridge L K, Wu H. Ecological field theory: the concept and field tests. Vegetatio, 1989, 83: 81-95.
doi: 10.1007/BF00031682
[41] Walker J, Crapper P F, Penridge L K. The crown-gap ratio (C) and crown cover: the field study. Austral Ecol, 1988, 13: 101-108.
doi: 10.1111/aec.1988.13.issue-1
[42] Wu H I, Sharpe P J H, Walker J, Penridge L K. Ecological field theory: a spatial analysis of resource interference among plants. Ecol Model, 1985, 29: 215-243.
doi: 10.1016/0304-3800(85)90054-7
[43] 杨从党. 作物研究过程中生态场理论的应用. 中国生态农业学报, 2002, 10(4): 112-114.
Yang C D. Application of ecological field theory to research of crops. Chin J Eco-Agric, 2002, 10(4): 108-110 (in Chinese with English abstract).
[44] 董珑丽, 魏茶花, 马晓娟, 张荣. 春小麦竞争能力与产量的关系. 生态学报, 2007, 27: 4203-4208.
Dong L L, Wei C H, Ma X J, Zhang R. The relationship between competitive ability and productive performance of spring wheat cultivars. Acta Ecol Sin, 2007, 27: 4203-4208 (in Chinese with English abstract).
[1] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[2] FANG Meng-Ying, REN Liang, LU Lin, DONG Xue-Rui, WU Zhi-Hai, YAN Peng, DONG Zhi-Qiang. Effect of ethylene-chlormequat-potassium on root morphological structure and grain yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(9): 2528-2538.
[3] LI Yi-Yang, LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua, LIU Zhen-Yu. Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll [J]. Acta Agronomica Sinica, 2023, 49(9): 2505-2516.
[4] ZHANG Li-Hua, ZHANG Jing-Ting, DONG Zhi-Qiang, HOU Wan-Bin, ZHAI Li-Chao, YAO Yan-Rong, LYU Li-Hua, ZHAO Yi-An, JIA Xiu-Ling. Effect of water management on yield and its components of winter wheat in different precipitation years [J]. Acta Agronomica Sinica, 2023, 49(9): 2539-2551.
[5] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
[6] YANG Yi, HE Zhi-Qiang, LIN Jia-Hui, LI Yang, CHEN Fei, LYU Chang-Wen, TANG Dao-Bin, ZHOU Quan-Lu, WANG Ji-Chun. Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield [J]. Acta Agronomica Sinica, 2023, 49(9): 2517-2527.
[7] CAO Yu-Jun, LIU Zhi-Ming, LAN Tian-Jiao, LIU Xiao-Dan, WEI Wen-Wen, YAO Fan-Yun, LYU Yan-Jie, WANG Li-Chun, WANG Yong-Jun. Responses of photosynthetic physiological characteristics of maize varieties released in different decades to nitrogen application rate in Jilin province [J]. Acta Agronomica Sinica, 2023, 49(8): 2183-2195.
[8] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[9] LI Yu-Xing, MA Liang-Liang, ZHANG Yue, QIN Bo-Ya, ZHANG Wen-Jing, MA Shang-Yu, HUANG Zheng-Lai, FAN Yong-Hui. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage [J]. Acta Agronomica Sinica, 2023, 49(8): 2210-2224.
[10] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Li-Fang, WANG Chen-Yang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[11] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
[12] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[13] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[14] DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953.
[15] DENG Ai-Xing, LI Ge-Xing, LYU Yu-Ping, LIU You-Hong, MENG Ying, ZHANG Jun, ZHANG Wei-Jian. Effect of shading duration after heading on grain yield and quality of japonica rice in northwest China [J]. Acta Agronomica Sinica, 2023, 49(7): 1930-1941.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .