Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (10): 2621-2632.doi: 10.3724/SP.J.1006.2023.34022

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping of stable QTL qSW20-1 for 100-seed weight and its effect on yield and quality in soybean

SUN Jian-Qiang1,2(), HONG Hui-Long1,2, ZHANG Yong3, GU Yong-Zhe2, GAO Hua-Wei2, ZHOU Ya2, CAO Jie2, QI Hang2, ZHAO Quan2, BAO Li-Gao4, CHEN Qing-Shan1, QIU Li-Juan1,2()   

  1. 1College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
    2National Key Facility for Gene Resources and Genetic Improvement / Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture and Rural Affairs / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161606, Heilongjiang, China
    4Agriculture and Animal Husbandry Technology Promotion Center of Inner Mongolia Autonomous Region, Hohhot 010018, Inner Mongolia, China
  • Received:2023-02-04 Accepted:2023-04-17 Online:2023-10-12 Published:2023-04-26
  • Contact: E-mail: qiulijuan@caas.cn
  • About author:**Contributed equally to this work
  • Supported by:
    National Key Research and Development Program of China(2021YFD1201600)

Abstract:

Seed weight is one of the key factors of soybean yield. Cloning the key genes controlling seed weight in major quantitative trait loci (QTL) is of great significance to improve soybean yield. In this study, a high-density genetic linkage map was constructed by SLAF-seq using 325 recombinant inbred lines (RILs) constructed by Qihuang 34 × Dongsheng 16 as the experimental materials. The total map distance was 2945.26 cM, and the average map distance was 0.47 cM. Combined with three environmental 100-seed weight phenotypes, 11 QTL related to 100-seed weight were detected. Among them, the QTL with stable environment was qSW20-1, which explaining 9.73%-18.10% of phenotypic variation. The large grain allele of the QTL could significantly increase the number of seed per plant and seed weight per plant, but there was no adverse effect on the two quality traits of protein content and fat content. The interval size was 435.42 kb, containing 36 genes. Five candidate genes were predicted by gene annotation and expression pattern analysis. The results of this study laid a solid foundation for soybean yield-increasing gene mining and molecular design breeding.

Key words: soybean, 100-seed weight, SLAF map, QTL mapping

Table 1

Phenotype of 100-seed weight traits of recombinant inbred lines and parents of Qihuang 34×Dongsheng 16"

环境
Environment
亲本Parents 重组自交系RIL
齐黄34
Qihuang 34
东生16
Dongsheng 16
均值
Mean
标准差
SD
最大值
Max.
最小值
Min.
峰度
Skewness
偏度
Kurtosis
变异系数
CV (%)
2021_CP 27.97±0.20 16.59±0.16 23.97 3.69 35.79 10.65 0.00 0.41 15.40
2022_SY 32.67±0.69 27.38±1.68 29.71 3.68 40.40 19.73 0.12 -0.15 12.40
2022_CP 29.48±2.22 22.63±1.29 25.64 2.78 35.30 16.58 0.77 0.09 10.83
BLUP 29.69±1.01 22.55±0.43 26.44 2.22 33.57 20.10 0.16 0.12 8.38

Fig. 1

Distribution of 100-seed weight for Qihuang 34×Dongsheng 16 RIL population and parent Vertical arrows indicate the phenotype of both parents. The curve represents the density map."

Fig. 2

High-density genetic map of soybean and collinearity analysis with reference genome A: SLAF markers are distributed on 20 chromosomes. The black bars in each linkage group represent the mapped SLAF-seq markers. The linkage group number is shown on the X-axis, and the genetic distance is shown on the Y-axis (cM is the unit). B: the abscissa is the genetic distance of each linkage group; the ordinate is the physical length of each linkage group, which disperses the form of markers in genome and genetic map collinearity. Different colors represent different chromosomes or linkage groups."

Table 2

Description for basic characteristics of high density genetic linkage map"

连锁群
Linkage group
标记数
No. of markers
总图距
Map distance
(cM)
平均图距
Average map distance (cM)
间距<5 cM
Gaps<5 cM
(%)
最大间距
Max. gap
(cM)
Gm01 348 145.08 0.42 100.00 4.54
Gm02 372 156.70 0.42 99.46 5.56
Gm03 365 167.92 0.46 99.18 7.46
Gm04 309 140.07 0.45 99.03 7.28
Gm05 183 160.41 0.88 98.35 5.38
Gm06 211 145.65 0.69 99.05 8.32
Gm07 371 161.22 0.44 99.46 9.49
Gm08 255 125.88 0.50 100.00 4.00
Gm09 357 133.83 0.38 99.72 5.50
Gm10 455 123.76 0.27 99.56 7.94
Gm11 131 122.39 0.94 96.92 10.95
Gm12 133 128.10 0.97 97.73 14.34
Gm13 243 125.73 0.52 99.17 10.69
Gm14 224 148.46 0.67 99.55 11.70
Gm15 625 167.77 0.27 99.36 7.90
Gm16 390 192.55 0.49 99.23 7.58
Gm17 345 148.67 0.43 98.84 6.76
Gm18 283 142.60 0.51 100.00 4.43
Gm19 484 152.16 0.32 99.79 6.31
Gm20 213 156.31 0.74 99.06 5.82
总计Total 6297 2945.26 0.47 99.17 14.34

Fig. 3

Eleven QTL related to 100-seed weight located in Qihuang 34 × Dongsheng 16 population"

Table 3

Quantitative trait loci (QTL) of 100-seed weight in three environments and BLUP data"

位点
QTL
环境
Environment
染色体
Chr.
标记区间
Flanking marker
遗传区间
Genetic interval (cM)
标记物理位置(a4)
Physical position of markers (a4)
阈值
LOD
表型贡献率
PVE (%)
加性效应
Add
已报道的区间
Reported QTLs
qSW6-1 2021_CP 6 Marker857319-Marker851862 43.5-44.5 28822155-35028781 4.18 4.01 -0.66 a [29], [30]
qSW6-2 2022_SY 6 Marker870421-Marker829649 90.5-95.5 10214058-12141974 6.05 5.39 -0.80 a [31]
BLUP 6 Marker870421-Marker829649 90.5-95.5 10214058-12141974 3.61 3.23 -0.37 a [31]
qSW7-1 2022_SY 7 Marker2815425-Marker2794476 91.5-94.5 6672130-7004632 5.61 5.03 0.76 b [32]
qSW7-2 2022_CP 7 Marker2748563-Marker2730119 87.5-88.5 7479038-7542682 10.81 9.33 0.90 b [32]
qSW12-1 2022_CP 12 Marker5062944-Marker4965351 49.5-50.5 18776850-21043651 3.71 3.06 0.51 b 新位点New
qSW13-1 2022_SY 13 Marker3590403-Marker3588064 85.5-87.5 36310106-36606816 5.74 5.05 -0.77 a [33]
qSW15-1 2021_CP 15 Marker4129867-Marker3915380 28.5-29.5 24348758-26925946 5.50 5.62 0.77 b [34]
BLUP 15 Marker4129867-Marker3915380 28.5-29.5 24348758-26925946 7.30 6.89 0.53 b [34]
qSW15-2 2022_SY 15 Marker4103818-Marker3854574 25.5-26.5 43842763-44130443 6.70 5.99 0.83 b 新位点New
qSW17-1 2021_CP 17 Marker5995186-Marker5989688 80.5-86.5 7982531-8957550 3.15 3.14 -0.57 a [35]
qSW18-1 2022_CP 18 Marker4315158-Marker4223583 65.5-68.5 12642699-14065422 5.09 4.28 -0.61 a 新位点New
qSW20-1 2021_CP 20 Marker2521089-Marker2536819 38.5-39.5 35867412-36014827 13.78 14.26 -1.23 a [36]
2022_SY 20 Marker2377057-Marker2521089 36.5-38.5 35579408-36014827 18.06 18.10 -1.45 a [36]
2022_CP 20 Marker2377057-Marker2521089 35.5-38.5 35579408-36014827 10.85 9.73 -0.92 a [36]
BLUP 20 Marker2416012-Marker2448322 39.5-40.5 35916231-35920512 19.87 19.04 -0.89 a [36]

Table 4

Identification of epistatic QTL of 100-seed weight in three environments and BLUP data"

环境
Environment
上位性QTL
Epi-QTL
染色体
Chromosome
位置1
Position1
标记区间
Flanking markers
上位性QTL
Epi-QTL
染色体
Chr.
位置2
Position2
标记区间2
Flanking markers2
阈值
LOD
表型贡献率
PVE (%)
2022_SY Epi-qSW3-1 3 60 Marker2065303-Marker2142542 Epi-qSW12-1 12 5 Marker4944242-Marker5028286 5.75 6.0603

Fig. 4

Genetic map of main quantitative trait loci (QTL) qSW20-1 and its effect on 100-seed weight trait of Qihuang 34 × Dongsheng 16 population A: genetic map of qSW20-1. The interval of genetic map is indicated by the black part. B: the correlation analysis between interval genotype and 100-seed weight phenotype. DS16 and QH34 represent the alleles of Qihuang 34 and Dongsheng 16, respectively. ****: P < 0.0001."

Fig. 5

Effect of qSW20-1 on other traits of Qihuang 34 × Dongsheng 16 population The effects of qSW20-1 on grain weight per plant (A), grain number per plant (B), protein content (C), and fat content (D) of Qihuang 34 × Dongsheng 16 population under different environments. DS16 and QH34 represent the alleles of Qihuang 34 and Dongsheng 16, respectively. *, **, and **** indicate significant difference at P < 0.05, P < 0.01, and P < 0.0001, respectively. ns: no significant difference."

Table S1

Gene annotation of genes in the location interval"

基因名称
Gene name
推测功能
Putative function
Glyma.20G114400 无注释 No annatation
Glyma.20G114500 二氢硫辛酰胺转乙酰酶 Dihydrolipoamide acetyltransferase
Glyma.20G114600 糖脂转移蛋白相关 Glycolipid transfer protein related
Glyma.20G114700 紫外线切除修复蛋白RAD23 UV excision repair protein RAD23
Glyma.20G114800 无注释 No annatation
Glyma.20G114900 无注释 No annatation
Glyma.20G114933 酸性N端SPT6 Acidic N-terminal SPT6
Glyma.20G114966 无注释 No annatation
Glyma.20G115000 PPR重复序列(PPR) PPR repeat (PPR)
Glyma.20G115100 Kow结构域转录因子1 Kow domain transcription factor 1
Glyma.20G115200 无注释 No annatation
Glyma.20G115300 DNA结合/转录因子 DNA binding/transcription factor
Glyma.20G115500 3-酮酰基辅酶a合酶5相关 3-ketoacyl-co a synthase 5
Glyma.20G115600 B-box锌指 B-box zinc finger
Glyma.20G115700 LOB结构域-包含蛋白42 LOB domain-containing protein 42
Glyma.20G115800 无注释 No annatation
Glyma.20G115900 无注释 No annatation
Glyma.20G116000 无注释 No annatation
Glyma.20G116100 50S核糖体蛋白L15, 叶绿体 50S ribosomal protein L15, chloroplast
Glyma.20G116200 锌指蛋白JAGGED相关 Zinc finger protein JAGGED related
Glyma.20G116300 蛋白质ISTR-1, 同功型A Protein ISTR-1, Isoform A
Glyma.20G116400 磷脂酶相关的//α/β-水解酶样蛋白 Phospholipase-related//α/β-hydrolase-like protein
Glyma.20G116500 腺苷酸异戊烯转移酶1, 叶绿体相关 Isopentene adenylate transferase 1, chloroplast correlation
Glyma.20G116600 VQ基序(VQ) VQ motif (VQ)
Glyma.20G116700 无注释 No annatation
Glyma.20G116800 单链核酸内切酶Single-stranded-nucleate endonuclease
Glyma.20G116900 酰转移酶 Acyltransferase
Glyma.20G117000 MYB样DNA结合蛋白MYB//MYB转录因子 MYB-like DNA binding protein MYB//MYB transcription factor
Glyma.20G117100 tRNA合成酶I类(E和Q), 催化结构域(tRNA-synt_1c) tRNA synthetases class I (E and Q), catalytic domain (tRNA-synt_1c)
Glyma.20G117150 谷氨酰胺-tRNA合成酶, 非特异性RNA结合区第1部分( tRNA_synt_1c_R1)
Glutaminyl-tRNA synthetase, non-specific RNA binding region part 1 (tRNA_synt_1c_R1)
Glyma.20G117200 无注释 No annatation
Glyma.20G117300 BAX抑制剂相关//未命名的亚家族 BAX inhibitor related//unnamed subfamily
Glyma.20G117400 无注释 No annatation
Glyma.20G117500 棉纤维表达蛋白(DUF761) Cotton fibre expressed protein (DUF761)
Glyma.20G117600 半胱氨酸-TRNA合成酶//半胱氨酸-TRNA连接酶 Cysteine-TRNA synthetase//cysteine-TRNA ligase
Glyma.20G117700 无注释 No annatation

Fig. 6

Specific expression analysis of candidate genes related to 100-seed weight of soybean at seed development stage The data information is derived from RNA-seq in soybean reference genome Wm82.a2.v1 in SoyBase."

[1] Van Wart J, Kersebaum K C, Peng S, Milner M, Cassman K G. Estimating crop yield potential at regional to national scales. Field Crops Res, 2013, 143: 34-43.
doi: 10.1016/j.fcr.2012.11.018
[2] Kim M Y, Van K, Kang Y J, Kim K H, Lee S H. Tracing soybean domestication history: from nucleotide to genome. Breed Sci, 2012, 61: 445-452.
doi: 10.1270/jsbbs.61.445
[3] Edwards C J Jr, Hartwig E E. Effect of seed size upon rate of germination in soybeans. Agron J, 1971, 63: 429-450.
doi: 10.2134/agronj1971.00021962006300030024x
[4] Zhang J, Song Q, Cregan P B, Jiang G L. Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max). Theor Appl Genet, 2016, 129: 117-130.
doi: 10.1007/s00122-015-2614-x pmid: 26518570
[5] Kulkarni K P, Asekova S, Lee D H, Bilyeu K, Song J T, Lee J D. Mapping QTLs for 100-seed weight in an interspecific soybean cross of Williams 82 (Glycine max) and PI 366121 (Glycine soja). Crop Pasture Sci, 2017, 68: 148-155.
doi: 10.1071/CP16246
[6] Liu D, Yan Y, Fujita Y, Xu D. Identification and validation of QTLs for 100-seed weight using chromosome segment substitution lines in soybean. Breed Sci, 2018, 68: 442-448.
doi: 10.1270/jsbbs.17127
[7] 葛天丽, 田宇, 张皓, 刘章雄, 李英慧, 邱丽娟. 基于高密度Bin图谱的大豆百粒重QTL定位和候选基因分析. 作物学报, 2022, 48: 2978-2986.
doi: 10.3724/SP.J.1006.2022.14226
Ge T L, Tian Y, Zhang H, Liu Z X, Li Y H, Qu L J. QTL mapping and candidate gene prediction of soybean 100-seed weight based on high-density bin map. Acta Agron Sin, 2022, 48: 2978-2986. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14226
[8] Lu X, Xiong Q, Cheng T, Li Q T, Liu X L, Bi Y D, Li W, Zhang W K, Ma B, Lai Y C, Du W G, Man W Q, Chen S Y, Zhang J S. PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Mol Plant, 2017, 10: 670-684.
doi: 10.1016/j.molp.2017.03.006
[9] Gu Y, Li W, Jiang H, Wang Y, Gao H, Liu M, Chen Q, Lai Y, He C. Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size. J Exp Bot, 2017, 68: 2717-2729.
doi: 10.1093/jxb/erx147
[10] Wang S, Liu S, Wang J, Yokosho K, Zhou B, Yu Y C, Liu Z, Frommer W B, Ma J F, Chen L Q, Guan Y, Shou H, Tian Z. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl Sci Rev, 2020, 7: 1776-1786.
doi: 10.1093/nsr/nwaa110
[11] Nguyen C X, Paddock K J, Zhang Z, Stacey M G. GmKIX8-1 regulates organ size in soybean and is the causative gene for the major seed weight QTL qSw17-1. New Phytol, 2021, 229: 920-934.
doi: 10.1111/nph.v229.2
[12] Lu X, Li Q T, Xiong Q, Li W, Bi Y D, Lai Y C, Liu X L, Man W Q, Zhang W K, Ma B, Chen S Y, Zhang J S. The transcriptomic signature of developing soybean seeds reveals the genetic basis of seed trait adaptation during domestication. Plant J, 2016, 86: 530-544.
doi: 10.1111/tpj.2016.86.issue-6
[13] Li J, Zhang Y, Ma R, Huang W, Hou J, Fang C, Wang L, Yuan Z, Sun Q, Dong X, Hou Y, Wang Y, Kong F, Sun L. Identification of ST1 reveals a selection involving hitchhiking of seed morphology and oil content during soybean domestication. Plant Biotechnol J, 2022, 20: 1110-1121.
doi: 10.1111/pbi.v20.6
[14] Hu D, Li X, Yang Z, Liu S, Hao D, Chao M, Zhang J, Yang H, Su X, Jiang M, Lu S, Zhang D, Wang L, Kan G, Wang H, Cheng H, Wang J, Huang F, Tian Z, Yu D. Downregulation of a gibberellin 3b-hydroxylase enhances photosynthesis and increases seed yield in soybean. New Phytol, 2022, 235: 502-517.
doi: 10.1111/nph.v235.2
[15] Zhu W, Yang C, Yong B, Wang Y, Li B, Gu Y, Wei S, An Z, Sun W, Qiu L, He C. An enhancing effect attributed to a nonsynonymous mutation in SOYBEAN SEED SIZE 1, a SPINDLY-like gene, is exploited in soybean domestication and improvement. New Phytol, 2022, 236: 1375-1392.
doi: 10.1111/nph.v236.4
[16] Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H, Xu C, Song J, Huang L, Wang C, Shi J, Wang R, Zheng X, Lu C, Wang X, Zheng H. SLAF-seq: an efficient method of large-scale De Novo SNP discovery and genotyping using high-throughput sequencing. PLoS One, 2013, 8: e58700.
doi: 10.1371/journal.pone.0058700
[17] Li B, Tian L, Zhang J, Huang L, Han F, Yan S, Wang L, Zheng H, Sun J. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. BMC Genomics, 2014, 15: 1086.
doi: 10.1186/1471-2164-15-1086
[18] Qi Z M, Zhang X Y, Qi H D, Xin D W, Han X, Jiang H W, Yin Z G, Zhang Z G, Zhang J Z, Zhu R S, Hu Z B, Liu C Y, Wu X X, Chen Q S, Che D D. Identification and validation of major QTLs and epistatic interactions for seed oil content in soybeans under multiple environments based on a high-density map. Euphytica, 2017, 213: 162.
doi: 10.1007/s10681-017-1952-y
[19] Cao Y, Li S, Wang Z, Chang F, Kong J, Gai J, Zhao T. Identification of major quantitative trait loci for seed oil content in soybeans by combining linkage and genome-wide association mapping. Front Plant Sci, 2017, 8: 1222.
doi: 10.3389/fpls.2017.01222 pmid: 28747922
[20] Zhang D, Li H, Wang J, Zhang H, Hu Z, Chu S, Lyu H, Yu D. High-density genetic mapping identifies new major loci for tolerance to low-phosphorus stress in soybean. Front Plant Sci, 2016, 7: 372.
doi: 10.3389/fpls.2016.00372 pmid: 27065041
[21] 程鹏. 大豆高密度遗传图谱的构建及种子大小和形状性状的QTL定位. 南京农业大学硕士学位论文, 江苏南京, 2016.
Cheng P. Construction of High-density Linkage Map and QTL Mapping of Seed Size and Shape Traits in Soybean. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2016. (in Chinese with English abstract)
[22] 邱丽娟, 常汝镇, 刘章雄. 大豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. p 22.
Qiu L J, Chang R Z, Liu Z X. Description and Data Standards for Soybean [Glycine max (L.) Merrill]. Beijing: China Agriculture Press, 2006. p 22. (in Chinese)
[23] Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extraction protocol for plants. Plant Mol Biol Rep, 1997, 15: 8.
doi: 10.1007/BF02772108
[24] Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics, 2008, 24: 713-714.
doi: 10.1093/bioinformatics/btn025 pmid: 18227114
[25] Ren H, Han J, Wang X, Zhang B, Yu L, Gao H, Hong H, Sun R, Tian Y, Qi X, Liu Z, Wu X, Qiu L J. QTL mapping of drought tolerance traits in soybean with SLAF sequencing. Crop J, 2020, 8: 977-989.
doi: 10.1016/j.cj.2020.04.004
[26] Li H, Ribaut J M, Li Z, Wang J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008, 116: 243-260.
doi: 10.1007/s00122-007-0663-5 pmid: 17985112
[27] McCouch S R. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13.
[28] Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, Fan D, Lu Y, Weng Q, Liu K, Zhou T, Jing Y, Si L, Dong G, Huang T, Lu T, Feng Q, Qian Q, Li J, Han B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet, 2012, 44: 32-39.
doi: 10.1038/ng.1018
[29] Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theor Appl Genet, 2004, 109: 552-561.
doi: 10.1007/s00122-004-1661-5 pmid: 15221142
[30] Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493-509.
doi: 10.2135/cropsci2001.412493x
[31] 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因. 作物学报, 2022, 48: 1884-1893.
doi: 10.3724/SP.J.1006.2022.14140
Liu C, Zhang Y X, Chen X L, Han W, Xing G N, He J B, Zhang J P, Zhang F K, Sun L, Li N, Wang W B, Gai J Y. Wild segment associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population. Acta Agron Sin, 2022, 48: 1884-1893. (in Chinese with English abstract)
[32] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因. 作物学报, 2022, 48: 635-643.
doi: 10.3724/SP.J.1006.2022.14008
Wang J, Zhang Y W, Jiao Z J, Liu P P, Chang W. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean. Acta Agron Sin, 2022, 48: 635-643. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14008
[33] Yan L, Li Y H, Yang C Y, Ren S X, Chang R Z, Zhang M C, Qiu L J. Identification and validation of an over-dominant QTL controlling soybean seed weight using populations derived from Glycine max × Glycine soja. Plant Breed, 2014, 133: 632-637.
doi: 10.1111/pbr.2014.133.issue-5
[34] Mian M A, Bailey M A, Tamulonis J P, Shipe E R, Carter T E Jr, Parrott W A, Ashley D A, Hussey R S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet, 1996, 93: 1011-1016.
doi: 10.1007/BF00230118 pmid: 24162474
[35] Kato S, Sayama T, Fujii K, Yumoto S, Kono Y, Hwang TY, Kikuchi A, Takada Y, Tanaka Y, Shiraiwa T, Ishimoto M. A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds. Theor Appl Genet, 2014, 127: 1365-1374.
doi: 10.1007/s00122-014-2304-0 pmid: 24718925
[36] Han Y, Li D, Zhu D, Li H, Li X, Teng W, Li W. QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet, 2012, 125: 671-683.
doi: 10.1007/s00122-012-1859-x pmid: 22481120
[37] Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, Xiao J, Zhang Q. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One, 2011, 6: e17595.
doi: 10.1371/journal.pone.0017595
[38] Han J, Han D, Guo Y, Yan H, Wei Z, Tian Y, Qiu L. QTL mapping pod dehiscence resistance in soybean (Glycine max L. Merr.) using specific-locus amplified fragment sequencing. Theor Appl Genet, 2019, 132: 2253-2272.
doi: 10.1007/s00122-019-03352-x
[39] Xue Y, Gao H, Liu X, Tang X, Cao D, Luan X, Zhao L, Qiu L. QTL mapping of palmitic acid content using specific-locus amplified fragment sequencing (SLAF-Seq) genotyping in soybeans (Glycine max L.). Int J Mol Sci, 2022, 23: 11273.
doi: 10.3390/ijms231911273
[40] Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642-1651.
doi: 10.2135/cropsci1999.3961642x
[41] Li W, Zheng D H, Van K J, Lee S H. QTL mapping for major agronomic traits across two years in soybean (Glycine max L. Merr.). J Crop Sci Biotechnol, 2008, 11: 171-176.
[42] Venable D L. Size-number trade-offs and the variation of seed size with plant resource status. Am Nat, 1992, 140: 287-304.
doi: 10.1086/285413
[43] Leishman M R. Does the seed size/number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality. Oikos, 2001, 93: 294-302.
doi: 10.1034/j.1600-0706.2001.930212.x
[44] Moles A T. Being John Harper: using evolutionary ideas to improve understanding of global patterns in plant traits. J Ecol, 2018, 106: 1-18.
doi: 10.1111/jec.2018.106.issue-1
[45] Zhang D, Li H, Wang J, Zhang H, Hu Z, Chu S, Lyu H, Yu D. High-density genetic mapping identifies new major loci for tolerance to low-phosphorus stress in soybean. Front Plant Sci, 2016, 7: 372.
doi: 10.3389/fpls.2016.00372 pmid: 27065041
[46] Lin M, Behal R, Oliver D J. Disruption of plE2, the gene for the E2 subunit of the plastid pyruvate dehydrogenase complex, in Arabidopsis causes an early embryo lethal phenotype. Plant Mol Biol, 2003, 52: 865-872
doi: 10.1023/A:1025076805902
[47] Xing G, Li J, Li W, Lam S M, Yuan H, Shui G, Yang J. AP2/ERF and R2R3-MYB family transcription factors: potential associations between temperature stress and lipid metabolism in Auxenochlorella protothecoides. Biotechnol Biofuels, 2021, 14: 22.
doi: 10.1186/s13068-021-01881-6
[48] Berg M, Rogers R, Muralla R, Meinke D. Requirement of aminoacyl-tRNA synthetases for gametogenesis and embryo development in Arabidopsis. Plant J, 2005, 44: 866-878.
doi: 10.1111/tpj.2005.44.issue-5
[1] LI Gang, ZHOU Yan-Chen, XIONG Ya-Jun, CHEN Yi-Jie, GUO Qing-Yuan, GAO Jie, SONG Jian, WANG Jun, LI Ying-Hui, QIU Li-Juan. Haplotype analysis of soybean leaf type regulator gene Ln and its homologous genes [J]. Acta Agronomica Sinica, 2023, 49(8): 2051-2063.
[2] LIU Ting-Xuan, GU Yong-Zhe, ZHANG Zhi-Hao, WANG Jun, SUN Jun-Ming, QIU Li-Juan. Mapping soybean protein QTLs based on high-density genetic map [J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541.
[3] LI Hui, LU Yi-Ping, WANG Xiao-Kai, WANG Lu-Yao, QIU Ting-Ting, ZHANG Xue-Ting, HUANG Hai-Yan, CUI Xiao-Yu. GmCIPK10, a CBL-interacting protein kinase promotes salt tolerance in soybean [J]. Acta Agronomica Sinica, 2023, 49(5): 1272-1281.
[4] WU Zong-Sheng, XU Cai-Long, LI Rui-Dong, XU Yi-Fan, SUN Shi, HAN Tian-Fu, SONG Wen-Wen, WU Cun-Xiang. Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean [J]. Acta Agronomica Sinica, 2023, 49(4): 1052-1064.
[5] SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150.
[6] YANG Jun-Fang, WANG Zhou, QIAO Lin-Yi, WANG Ya, ZHAO Yi-Ting, ZHANG Hong-Bin, SHEN DengGao, WANG HongWei, CAO Yue. QTL mapping of seed size traits based on a high-density genetic map in castor [J]. Acta Agronomica Sinica, 2023, 49(3): 719-730.
[7] YANG Bin, QIAO Ling, ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 744-754.
[8] LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844.
[9] YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320.
[10] LI Jia-Jia, LONG Qun, ZHU Shang-Shang, SHAN Ya-Jing, WU Mei-Yan, LU Yun, ZHI Xian-Guan, LIAO Wei, CHEN Hao-Ran, ZHAO Zhen-Bang, MIAO Long, GAO Hui-Hui, LI Ying-Hui, WANG Xiao-Bo, QIU Li-Juan. Construction of evaluation method for tolerance to high-temperature and screening of heat-tolerant germplasm resources of bud stage in soybean [J]. Acta Agronomica Sinica, 2023, 49(11): 2863-2875.
[11] ZHAO Yu-Jing, ZHANG Bin-Shuo, SU An-Yu, YU Zhen-Hai, LI Jia-Huan, LIN Yang, ZHANG Yan-Ting, WU Xiao-Xia, ZHAO Ying. Mining candidate genes related to soybean regeneration based on BSA-seq method [J]. Acta Agronomica Sinica, 2023, 49(11): 2935-2948.
[12] GAO Chao, CHEN Ping, DU Qing, FU Zhi-Dan, LUO Kai, LIN Ping, LI Yi-Ling, LIU Shan-Shan, YONG Tai-Wen, YANG Wen-Yu. Effects of sowing date and density on stem, leaf growth, and yield formation in strip intercropping soybean [J]. Acta Agronomica Sinica, 2023, 49(11): 3090-3099.
[13] YANG Hao, XIANG Shi-Hua, LIU Li, NING Ke-Jun, YANG Xue, SHU Ying-Jie, HE Qing-Yuan. Genome-wide association analysis of growth period traits in soybean of Sichuan and Chongqing [J]. Acta Agronomica Sinica, 2023, 49(10): 2727-2737.
[14] CAO Hui-Min, YANG Xian-Li, WANG Li-Zhi, LI Ping-Ping, ZHAI Lai-Yuan, JIANG Shu-Kun, ZHENG Tian-Qing, QIU Xian-Jin, XU Jian-Long. QTL identification and favorable allele mining of cold tolerance at seedling stage by reciprocal introgression and recombinant inbred line populations in rice [J]. Acta Agronomica Sinica, 2023, 49(10): 2633-2642.
[15] WANG Hui, WU Zhi-Yi, ZHANG Yu-E, YU De-Yue. Transcriptional expression profiling of soybean genes under sulfur-starved conditions by RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(1): 105-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .