Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (10): 2621-2632.doi: 10.3724/SP.J.1006.2023.34022
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
SUN Jian-Qiang1,2(), HONG Hui-Long1,2, ZHANG Yong3, GU Yong-Zhe2, GAO Hua-Wei2, ZHOU Ya2, CAO Jie2, QI Hang2, ZHAO Quan2, BAO Li-Gao4, CHEN Qing-Shan1, QIU Li-Juan1,2()
[1] |
Van Wart J, Kersebaum K C, Peng S, Milner M, Cassman K G. Estimating crop yield potential at regional to national scales. Field Crops Res, 2013, 143: 34-43.
doi: 10.1016/j.fcr.2012.11.018 |
[2] |
Kim M Y, Van K, Kang Y J, Kim K H, Lee S H. Tracing soybean domestication history: from nucleotide to genome. Breed Sci, 2012, 61: 445-452.
doi: 10.1270/jsbbs.61.445 |
[3] |
Edwards C J Jr, Hartwig E E. Effect of seed size upon rate of germination in soybeans. Agron J, 1971, 63: 429-450.
doi: 10.2134/agronj1971.00021962006300030024x |
[4] |
Zhang J, Song Q, Cregan P B, Jiang G L. Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max). Theor Appl Genet, 2016, 129: 117-130.
doi: 10.1007/s00122-015-2614-x pmid: 26518570 |
[5] |
Kulkarni K P, Asekova S, Lee D H, Bilyeu K, Song J T, Lee J D. Mapping QTLs for 100-seed weight in an interspecific soybean cross of Williams 82 (Glycine max) and PI 366121 (Glycine soja). Crop Pasture Sci, 2017, 68: 148-155.
doi: 10.1071/CP16246 |
[6] |
Liu D, Yan Y, Fujita Y, Xu D. Identification and validation of QTLs for 100-seed weight using chromosome segment substitution lines in soybean. Breed Sci, 2018, 68: 442-448.
doi: 10.1270/jsbbs.17127 |
[7] |
葛天丽, 田宇, 张皓, 刘章雄, 李英慧, 邱丽娟. 基于高密度Bin图谱的大豆百粒重QTL定位和候选基因分析. 作物学报, 2022, 48: 2978-2986.
doi: 10.3724/SP.J.1006.2022.14226 |
Ge T L, Tian Y, Zhang H, Liu Z X, Li Y H, Qu L J. QTL mapping and candidate gene prediction of soybean 100-seed weight based on high-density bin map. Acta Agron Sin, 2022, 48: 2978-2986. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14226 |
|
[8] |
Lu X, Xiong Q, Cheng T, Li Q T, Liu X L, Bi Y D, Li W, Zhang W K, Ma B, Lai Y C, Du W G, Man W Q, Chen S Y, Zhang J S. PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Mol Plant, 2017, 10: 670-684.
doi: 10.1016/j.molp.2017.03.006 |
[9] |
Gu Y, Li W, Jiang H, Wang Y, Gao H, Liu M, Chen Q, Lai Y, He C. Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size. J Exp Bot, 2017, 68: 2717-2729.
doi: 10.1093/jxb/erx147 |
[10] |
Wang S, Liu S, Wang J, Yokosho K, Zhou B, Yu Y C, Liu Z, Frommer W B, Ma J F, Chen L Q, Guan Y, Shou H, Tian Z. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl Sci Rev, 2020, 7: 1776-1786.
doi: 10.1093/nsr/nwaa110 |
[11] |
Nguyen C X, Paddock K J, Zhang Z, Stacey M G. GmKIX8-1 regulates organ size in soybean and is the causative gene for the major seed weight QTL qSw17-1. New Phytol, 2021, 229: 920-934.
doi: 10.1111/nph.v229.2 |
[12] |
Lu X, Li Q T, Xiong Q, Li W, Bi Y D, Lai Y C, Liu X L, Man W Q, Zhang W K, Ma B, Chen S Y, Zhang J S. The transcriptomic signature of developing soybean seeds reveals the genetic basis of seed trait adaptation during domestication. Plant J, 2016, 86: 530-544.
doi: 10.1111/tpj.2016.86.issue-6 |
[13] |
Li J, Zhang Y, Ma R, Huang W, Hou J, Fang C, Wang L, Yuan Z, Sun Q, Dong X, Hou Y, Wang Y, Kong F, Sun L. Identification of ST1 reveals a selection involving hitchhiking of seed morphology and oil content during soybean domestication. Plant Biotechnol J, 2022, 20: 1110-1121.
doi: 10.1111/pbi.v20.6 |
[14] |
Hu D, Li X, Yang Z, Liu S, Hao D, Chao M, Zhang J, Yang H, Su X, Jiang M, Lu S, Zhang D, Wang L, Kan G, Wang H, Cheng H, Wang J, Huang F, Tian Z, Yu D. Downregulation of a gibberellin 3b-hydroxylase enhances photosynthesis and increases seed yield in soybean. New Phytol, 2022, 235: 502-517.
doi: 10.1111/nph.v235.2 |
[15] |
Zhu W, Yang C, Yong B, Wang Y, Li B, Gu Y, Wei S, An Z, Sun W, Qiu L, He C. An enhancing effect attributed to a nonsynonymous mutation in SOYBEAN SEED SIZE 1, a SPINDLY-like gene, is exploited in soybean domestication and improvement. New Phytol, 2022, 236: 1375-1392.
doi: 10.1111/nph.v236.4 |
[16] |
Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H, Xu C, Song J, Huang L, Wang C, Shi J, Wang R, Zheng X, Lu C, Wang X, Zheng H. SLAF-seq: an efficient method of large-scale De Novo SNP discovery and genotyping using high-throughput sequencing. PLoS One, 2013, 8: e58700.
doi: 10.1371/journal.pone.0058700 |
[17] |
Li B, Tian L, Zhang J, Huang L, Han F, Yan S, Wang L, Zheng H, Sun J. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. BMC Genomics, 2014, 15: 1086.
doi: 10.1186/1471-2164-15-1086 |
[18] |
Qi Z M, Zhang X Y, Qi H D, Xin D W, Han X, Jiang H W, Yin Z G, Zhang Z G, Zhang J Z, Zhu R S, Hu Z B, Liu C Y, Wu X X, Chen Q S, Che D D. Identification and validation of major QTLs and epistatic interactions for seed oil content in soybeans under multiple environments based on a high-density map. Euphytica, 2017, 213: 162.
doi: 10.1007/s10681-017-1952-y |
[19] |
Cao Y, Li S, Wang Z, Chang F, Kong J, Gai J, Zhao T. Identification of major quantitative trait loci for seed oil content in soybeans by combining linkage and genome-wide association mapping. Front Plant Sci, 2017, 8: 1222.
doi: 10.3389/fpls.2017.01222 pmid: 28747922 |
[20] |
Zhang D, Li H, Wang J, Zhang H, Hu Z, Chu S, Lyu H, Yu D. High-density genetic mapping identifies new major loci for tolerance to low-phosphorus stress in soybean. Front Plant Sci, 2016, 7: 372.
doi: 10.3389/fpls.2016.00372 pmid: 27065041 |
[21] | 程鹏. 大豆高密度遗传图谱的构建及种子大小和形状性状的QTL定位. 南京农业大学硕士学位论文, 江苏南京, 2016. |
Cheng P. Construction of High-density Linkage Map and QTL Mapping of Seed Size and Shape Traits in Soybean. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2016. (in Chinese with English abstract) | |
[22] | 邱丽娟, 常汝镇, 刘章雄. 大豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. p 22. |
Qiu L J, Chang R Z, Liu Z X. Description and Data Standards for Soybean [Glycine max (L.) Merrill]. Beijing: China Agriculture Press, 2006. p 22. (in Chinese) | |
[23] |
Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extraction protocol for plants. Plant Mol Biol Rep, 1997, 15: 8.
doi: 10.1007/BF02772108 |
[24] |
Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics, 2008, 24: 713-714.
doi: 10.1093/bioinformatics/btn025 pmid: 18227114 |
[25] |
Ren H, Han J, Wang X, Zhang B, Yu L, Gao H, Hong H, Sun R, Tian Y, Qi X, Liu Z, Wu X, Qiu L J. QTL mapping of drought tolerance traits in soybean with SLAF sequencing. Crop J, 2020, 8: 977-989.
doi: 10.1016/j.cj.2020.04.004 |
[26] |
Li H, Ribaut J M, Li Z, Wang J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008, 116: 243-260.
doi: 10.1007/s00122-007-0663-5 pmid: 17985112 |
[27] | McCouch S R. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13. |
[28] |
Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, Fan D, Lu Y, Weng Q, Liu K, Zhou T, Jing Y, Si L, Dong G, Huang T, Lu T, Feng Q, Qian Q, Li J, Han B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet, 2012, 44: 32-39.
doi: 10.1038/ng.1018 |
[29] |
Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theor Appl Genet, 2004, 109: 552-561.
doi: 10.1007/s00122-004-1661-5 pmid: 15221142 |
[30] |
Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493-509.
doi: 10.2135/cropsci2001.412493x |
[31] |
刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因. 作物学报, 2022, 48: 1884-1893.
doi: 10.3724/SP.J.1006.2022.14140 |
Liu C, Zhang Y X, Chen X L, Han W, Xing G N, He J B, Zhang J P, Zhang F K, Sun L, Li N, Wang W B, Gai J Y. Wild segment associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population. Acta Agron Sin, 2022, 48: 1884-1893. (in Chinese with English abstract) | |
[32] |
王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因. 作物学报, 2022, 48: 635-643.
doi: 10.3724/SP.J.1006.2022.14008 |
Wang J, Zhang Y W, Jiao Z J, Liu P P, Chang W. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean. Acta Agron Sin, 2022, 48: 635-643. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14008 |
|
[33] |
Yan L, Li Y H, Yang C Y, Ren S X, Chang R Z, Zhang M C, Qiu L J. Identification and validation of an over-dominant QTL controlling soybean seed weight using populations derived from Glycine max × Glycine soja. Plant Breed, 2014, 133: 632-637.
doi: 10.1111/pbr.2014.133.issue-5 |
[34] |
Mian M A, Bailey M A, Tamulonis J P, Shipe E R, Carter T E Jr, Parrott W A, Ashley D A, Hussey R S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet, 1996, 93: 1011-1016.
doi: 10.1007/BF00230118 pmid: 24162474 |
[35] |
Kato S, Sayama T, Fujii K, Yumoto S, Kono Y, Hwang TY, Kikuchi A, Takada Y, Tanaka Y, Shiraiwa T, Ishimoto M. A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds. Theor Appl Genet, 2014, 127: 1365-1374.
doi: 10.1007/s00122-014-2304-0 pmid: 24718925 |
[36] |
Han Y, Li D, Zhu D, Li H, Li X, Teng W, Li W. QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet, 2012, 125: 671-683.
doi: 10.1007/s00122-012-1859-x pmid: 22481120 |
[37] |
Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, Xiao J, Zhang Q. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One, 2011, 6: e17595.
doi: 10.1371/journal.pone.0017595 |
[38] |
Han J, Han D, Guo Y, Yan H, Wei Z, Tian Y, Qiu L. QTL mapping pod dehiscence resistance in soybean (Glycine max L. Merr.) using specific-locus amplified fragment sequencing. Theor Appl Genet, 2019, 132: 2253-2272.
doi: 10.1007/s00122-019-03352-x |
[39] |
Xue Y, Gao H, Liu X, Tang X, Cao D, Luan X, Zhao L, Qiu L. QTL mapping of palmitic acid content using specific-locus amplified fragment sequencing (SLAF-Seq) genotyping in soybeans (Glycine max L.). Int J Mol Sci, 2022, 23: 11273.
doi: 10.3390/ijms231911273 |
[40] |
Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642-1651.
doi: 10.2135/cropsci1999.3961642x |
[41] | Li W, Zheng D H, Van K J, Lee S H. QTL mapping for major agronomic traits across two years in soybean (Glycine max L. Merr.). J Crop Sci Biotechnol, 2008, 11: 171-176. |
[42] |
Venable D L. Size-number trade-offs and the variation of seed size with plant resource status. Am Nat, 1992, 140: 287-304.
doi: 10.1086/285413 |
[43] |
Leishman M R. Does the seed size/number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality. Oikos, 2001, 93: 294-302.
doi: 10.1034/j.1600-0706.2001.930212.x |
[44] |
Moles A T. Being John Harper: using evolutionary ideas to improve understanding of global patterns in plant traits. J Ecol, 2018, 106: 1-18.
doi: 10.1111/jec.2018.106.issue-1 |
[45] |
Zhang D, Li H, Wang J, Zhang H, Hu Z, Chu S, Lyu H, Yu D. High-density genetic mapping identifies new major loci for tolerance to low-phosphorus stress in soybean. Front Plant Sci, 2016, 7: 372.
doi: 10.3389/fpls.2016.00372 pmid: 27065041 |
[46] |
Lin M, Behal R, Oliver D J. Disruption of plE2, the gene for the E2 subunit of the plastid pyruvate dehydrogenase complex, in Arabidopsis causes an early embryo lethal phenotype. Plant Mol Biol, 2003, 52: 865-872
doi: 10.1023/A:1025076805902 |
[47] |
Xing G, Li J, Li W, Lam S M, Yuan H, Shui G, Yang J. AP2/ERF and R2R3-MYB family transcription factors: potential associations between temperature stress and lipid metabolism in Auxenochlorella protothecoides. Biotechnol Biofuels, 2021, 14: 22.
doi: 10.1186/s13068-021-01881-6 |
[48] |
Berg M, Rogers R, Muralla R, Meinke D. Requirement of aminoacyl-tRNA synthetases for gametogenesis and embryo development in Arabidopsis. Plant J, 2005, 44: 866-878.
doi: 10.1111/tpj.2005.44.issue-5 |
[1] | LI Gang, ZHOU Yan-Chen, XIONG Ya-Jun, CHEN Yi-Jie, GUO Qing-Yuan, GAO Jie, SONG Jian, WANG Jun, LI Ying-Hui, QIU Li-Juan. Haplotype analysis of soybean leaf type regulator gene Ln and its homologous genes [J]. Acta Agronomica Sinica, 2023, 49(8): 2051-2063. |
[2] | LIU Ting-Xuan, GU Yong-Zhe, ZHANG Zhi-Hao, WANG Jun, SUN Jun-Ming, QIU Li-Juan. Mapping soybean protein QTLs based on high-density genetic map [J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541. |
[3] | LI Hui, LU Yi-Ping, WANG Xiao-Kai, WANG Lu-Yao, QIU Ting-Ting, ZHANG Xue-Ting, HUANG Hai-Yan, CUI Xiao-Yu. GmCIPK10, a CBL-interacting protein kinase promotes salt tolerance in soybean [J]. Acta Agronomica Sinica, 2023, 49(5): 1272-1281. |
[4] | WU Zong-Sheng, XU Cai-Long, LI Rui-Dong, XU Yi-Fan, SUN Shi, HAN Tian-Fu, SONG Wen-Wen, WU Cun-Xiang. Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean [J]. Acta Agronomica Sinica, 2023, 49(4): 1052-1064. |
[5] | SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150. |
[6] | YANG Jun-Fang, WANG Zhou, QIAO Lin-Yi, WANG Ya, ZHAO Yi-Ting, ZHANG Hong-Bin, SHEN DengGao, WANG HongWei, CAO Yue. QTL mapping of seed size traits based on a high-density genetic map in castor [J]. Acta Agronomica Sinica, 2023, 49(3): 719-730. |
[7] | YANG Bin, QIAO Ling, ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 744-754. |
[8] | LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844. |
[9] | YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320. |
[10] | LI Jia-Jia, LONG Qun, ZHU Shang-Shang, SHAN Ya-Jing, WU Mei-Yan, LU Yun, ZHI Xian-Guan, LIAO Wei, CHEN Hao-Ran, ZHAO Zhen-Bang, MIAO Long, GAO Hui-Hui, LI Ying-Hui, WANG Xiao-Bo, QIU Li-Juan. Construction of evaluation method for tolerance to high-temperature and screening of heat-tolerant germplasm resources of bud stage in soybean [J]. Acta Agronomica Sinica, 2023, 49(11): 2863-2875. |
[11] | ZHAO Yu-Jing, ZHANG Bin-Shuo, SU An-Yu, YU Zhen-Hai, LI Jia-Huan, LIN Yang, ZHANG Yan-Ting, WU Xiao-Xia, ZHAO Ying. Mining candidate genes related to soybean regeneration based on BSA-seq method [J]. Acta Agronomica Sinica, 2023, 49(11): 2935-2948. |
[12] | GAO Chao, CHEN Ping, DU Qing, FU Zhi-Dan, LUO Kai, LIN Ping, LI Yi-Ling, LIU Shan-Shan, YONG Tai-Wen, YANG Wen-Yu. Effects of sowing date and density on stem, leaf growth, and yield formation in strip intercropping soybean [J]. Acta Agronomica Sinica, 2023, 49(11): 3090-3099. |
[13] | YANG Hao, XIANG Shi-Hua, LIU Li, NING Ke-Jun, YANG Xue, SHU Ying-Jie, HE Qing-Yuan. Genome-wide association analysis of growth period traits in soybean of Sichuan and Chongqing [J]. Acta Agronomica Sinica, 2023, 49(10): 2727-2737. |
[14] | CAO Hui-Min, YANG Xian-Li, WANG Li-Zhi, LI Ping-Ping, ZHAI Lai-Yuan, JIANG Shu-Kun, ZHENG Tian-Qing, QIU Xian-Jin, XU Jian-Long. QTL identification and favorable allele mining of cold tolerance at seedling stage by reciprocal introgression and recombinant inbred line populations in rice [J]. Acta Agronomica Sinica, 2023, 49(10): 2633-2642. |
[15] | WANG Hui, WU Zhi-Yi, ZHANG Yu-E, YU De-Yue. Transcriptional expression profiling of soybean genes under sulfur-starved conditions by RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(1): 105-118. |
|