作物学报 ›› 2020, Vol. 46 ›› Issue (7): 1033-1051.doi: 10.3724/SP.J.1006.2020.94130
秦天元1,2,**,孙超1,2,**,毕真真1,2,梁文君1,2,李鹏程1,2,张俊莲1,白江平1,2,*()
Tian-Yuan QIN1,2,**,Chao SUN1,2,**,Zhen-Zhen BI1,2,Wen-Jun LIANG1,2,Peng-Cheng LI1,2,Jun-Lian ZHANG1,Jiang-Ping BAI1,2,*()
摘要:
权重基因共表达网络分析(Weighted Gene Co-expression Network Analysis, WGCNA)是系统生物学的一种研究方法, 在多样本转录组数据中挖掘与目标性状相关的基因模块有较广泛的应用。为了深入探究马铃薯应对干旱胁迫的分子机制, 本研究以国际马铃薯中心引进栽培种C16 (CIP 397077.16)和C119 (CIP 398098.119)为试验材料, 将其无菌组培苗利用甘露醇模拟干旱胁迫, 处理0 h、2 h、6 h、12 h和24 h, 取其根系进行转录组测序, 每样设3个生物学重复, 共30个样本。基于以上转录组数据, 利用WGCNA构建与抗逆生理性状相关联的权重基因共表达网络, 得到15个与根系抗旱密切相关的基因共表达模块, 并从4个与目标性状关联度最高的模块中发掘到数个核心基因, 功能注释表明其中大部分参与干旱胁迫调控通路。这些结果为进一步研究马铃薯根系抗旱的分子遗传机制提供了线索。
[1] | 赵鸿, 任丽雯, 赵福年, 齐月, 蔡迪花, 王春玲, 陈斐, 雷俊, 王润元, 王鹤龄, 张凯, 姚玉璧, 王兴. 马铃薯对土壤水分胁迫响应的研究进展. 干旱气象, 2018,36:537-543. |
Zhao H, Ren L W, Zhao F N, Qi Y, Cai D H, Wang C L, Chen F, Lei J, Wang R Y, Wang H L, Zhang K, Yao Y B, Wang X. Potato response to soil water stress research progress. Drought Meteorol, 2018,36:537-543 (in Chinese with English abstract). | |
[2] | 李海珀. 铃薯抗旱性研究进展. 种子科技, 2018,36(3):118-120. |
Li H P. Advances in drought resistance of potatoes. Seed Sci Technol, 2018,36(3):118-120 (in Chinese with English abstract). | |
[3] | 秦天元, 孙超, 毕真真, 王瀚, 李鑫, 曾文婕, 白江平. 物根系成像技术研究进展及马铃薯根系研究应用前景. 核农学报, 2019,33:412-419. |
Qin T Y, Sun C, Bi Z Z, Wang H, Li X, Zeng W J, Bai J P. The research progress of plant root imaging technology and the application prospect of potato root research. J Nucl Agric, 2019,33:412-419 (in Chinese with English abstract). | |
[4] |
Clark L J, Whalley W R, Barraclough P B. How do roots penetrate strong soil. Plant Soil, 2003,255:93-104.
doi: 10.1023/A:1026140122848 |
[5] |
Liu S, Wang Z, Chen D, Zhang B, Tian R R, Wu J, Zhang Y, Xu K Y, Yang L M, Cheng C, Ma J, Lyu L B, Zheng Y T, Hu X T, Yi Z, Wang X T, Li J L. Annotation and cluster analysis of spatiotemporal- and sex-related lncRNA expression in rhesus macaque brain. Genome Res, 2017,27:1608-1620.
doi: 10.1101/gr.217463.116 pmid: 28687705 |
[6] |
Greenham K, Guadagno C R, Gehan M A, Mockler T C, Weinig C, Ewers B E, McClung C R. Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in brassica rapa. eLife, 2017,6:e29655.
doi: 10.7554/eLife.29655 pmid: 28826479 |
[7] |
Hollender C A, Kang C, Darwish O, Geretz A, Matthews B F, Slovin J, Alkharouf N, Liu Z. Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks. Plant Physiol, 2014,165:1062-1075.
pmid: 24828307 |
[8] | 杨宇昕, 桑志勤, 许诚, 代文双, 邹枨. 用WGCNA进行玉米花期基因共表达模块鉴定. 作物学报, 2019,45:161-174. |
Yang Y X, Sang Z Q, Xu C, Dai W S, Zou C. Identification of co-expression module of maize florescence genes using WGCNA. Acta Agron Sin, 2019,45:161-174 (in Chinese with English abstract). | |
[9] |
Miller G, Suzuki N, Ciftci Y S. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ, 2010,33:453-467.
doi: 10.1111/j.1365-3040.2009.02041.x pmid: 19712065 |
[10] |
Wrzaczek M, Brosché M, Kangasjärvi J. ROS signaling loops-production, perception, regulation. Curr Opin Plant Biol, 2013,16:575-582.
doi: 10.1016/j.pbi.2013.07.002 pmid: 23876676 |
[11] |
Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signaling. J Exp Bot, 2014,65:1229-1240.
doi: 10.1093/jxb/ert375 pmid: 24253197 |
[12] | Zhou D, Xin Z, Yi L, Zhen H Z, Zhen S. AgriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res, 2010,38:64-70. |
[13] | Tian T, Yue L, Heng Y Y, Qi Y, Xin Y, Zhou D, Wen Y X, Zhen S. AgriGO v 2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res, 2017,45:122-129. |
[14] |
Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003,13:2498-2504.
pmid: 14597658 |
[15] |
Tognetti T A, Kris M, Korneel V, Brigitte C, Inge D C, Sheila C, Ricarda F, Els P, Wout B, Bernard G, Dirk S K A, Frank V B. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell, 2010,22:2660-2679.
doi: 10.1105/tpc.109.071316 pmid: 20798329 |
[16] |
Clay C, Song Q P, Jan Z, Thomas G. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell, 2004,16:3285-3303.
pmid: 15539469 |
[17] |
Benschop J J, Mohammed S, O’Flaherty M, Heck A J, Slijper M, Menke F L. Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics, 2007,6:1198-1214.
doi: 10.1074/mcp.M600429-MCP200 pmid: 17317660 |
[18] |
Gagne J M, Downes B P, Shiu S H, Durski A M, Vierstra R D. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci USA, 2002,99:11519-11524.
pmid: 12169662 |
[19] |
Laloi C, Przybyla D, Apel K. A genetic approach towards elucidating the biological activity of different reactive oxygen species in Arabidopsis thaliana, J Exp Bot, 2006,57:1719-1724.
pmid: 16720605 |
[20] |
Fedoroff N V, Battisti D S, Beachy R N, Cooper P J, Fischhoff D A, Hodges C N, Knauf V C, Lobell D, Mazur B J, Molden D Reynolds M P, Ronald P C, Rosegrant M W, Sanchez P A, Vonshak A, Zhu J K. Radically rethinking agriculture for the 21st century. Science, 2010,327:833-834.
doi: 10.1126/science.1186834 pmid: 20150494 |
[21] | 纪瑞鹏, 于文颖, 冯锐, 武晋雯, 张玉书, 王茜. 作物对干旱胁迫的响应过程与早期识别技术研究进展. 灾害学, 2019,34(2):153-160. |
Ji R P, Yu W Y, Feng R, Wu J W, Zhang Y S, Wang Q. Advances in crop response to drought stress and early identification techniques. Disaster Sci, 2019,34(2):153-160 (in Chinese with English abstract). | |
[22] | Yuan Q Z, Wu S H, Dai E F, Zhao D S, Ren P, Zhang X R. NPP vulnerability of the potential vegetation of China to climate change in the past and future. J Geogr Sci, 2017,27:131-142. |
[23] | Huang L, Li W C, Tam N F Y, Ye Z H. Effects of root morphology and anatomy on cadmium uptake and translocation in rice (Oryza sativa L.). J Environ Sci, 2019,75:296-306. |
[24] | 郭宾会, 戴毅, 宋丽. 干旱下植物激素影响作物根系发育的研究进展. 生物技术通报, 2018,34(7):48-56. |
Guo B H, Dai Y, Song L. Advances in plant hormones affecting root development under drought. Biotechnol Bull, 2018,34(7):48-56 (in Chinese with English abstract). | |
[25] | 朱维琴, 吴良欢, 陶勤南. 作物根系对干旱胁迫逆境的适应性研究进展. 土壤与环境, 2002,11:430-433. |
Zhu W Q, Wu L H, Tao Q N. Advances in research on the adaptability of crop roots to drought stress. Soil Environ, 2002,11:430-433 (in Chinese with English abstract). | |
[26] |
Xu Z P, Miao Y X, Chen Z A, Gao H L, Wang R X, Zhao D S, Zhang B C, Zhou Y H, Tang S Z, Zhang H G, Liu Q Q. Identification and fine mapping of qGN1c, a QTL for grain number per panicle, in rice (Oryza sativa L.). Mol Breed, 2019,39:1-12.
doi: 10.1007/s11032-018-0907-x |
[27] | 王伟伟, 王洪洋, 刘晶, 梁静思, 李灿辉, 唐唯. 马铃薯重要性状QTL定位及3个抗病性状分子标记辅助选育. 作物杂志, 2018, (6):10-16. |
Wang W W, Wang H Y, Liu J, Liang J S, Li C H, Tang W. Mapping of important traits of potato and molecular marker assisted selection of three disease resistant traits. Crops, 2018, (6):10-16 (in Chinese with English abstract). | |
[28] |
Guo Y, Xing Y. Weighted gene co-expression network analysis of pneumocytes under exposure to a carcinogenic dose of chloroprene. Life Sci, 2016,151:339-347.
doi: 10.1016/j.lfs.2016.02.074 pmid: 26916823 |
[29] |
Tao W, Xing W H, Xin T L, Yu J L, Wen J Z, Qiang H, Wan J L, Lu Y X, Rong T, Hong J W, He S Z. Weighted gene co-expression network analysis identifies FKBP11 as a key regulator in acute aortic dissection through a NF-kB dependent pathway. Front Physiol, 2017,8:1-17.
doi: 10.3389/fphys.2017.00001 pmid: 28154536 |
[30] |
Hai T Z, Xin X D, Kai Z, Yue Z L, Yu J W, Jin X L, Yan H, Xu B W, Quan Q Z. Weighted correlation network analysis (WGCNA) of Japanese flounder (Paralichthys olivaceus) embryo transcriptome provides crucial gene sets for understanding haploid syndrome and rescue by diploidization. J Ocean Univ China, 2018,17:1441-1450.
doi: 10.1007/s11802-018-3656-x |
[31] | Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S. Weighted gene coexpression network analysis: state of the art. J Biopharmaceutical Statistics, 2010,20:281-300. |
[32] |
Jaspers P, Kangasjrvi J. Reactive oxygen species in abiotic stress signaling. Physiol Plant, 2010,138:405-413.
pmid: 20028478 |
[33] | 尹智宇, 郭华春, 封永生, 肖关丽. 干旱胁迫下马铃薯生理研究进展. 中国马铃薯, 2017,31:234-239. |
Yin Z Y, Guo H C, Feng Y S, Xiao G L. Advances in potato physiology under drought stress. Chin Potato, 2017,31:234-239 (in Chinese with English abstract). | |
[34] | 崔慧妮, 屠培培, 李晓丽, 李燕燕, 田凤龙, 张宪省, 孙庆泉. 农杆菌介导的ZmHSD1基因转入玉米自交系. 山东农业科学, 2013,45(7):6-8. |
Cui H N, Tu P P, Li X L, Li Y Y, Tian F L, Zhang X S, Sun Q Q. Agrobacterium-mediated transformation of ZmHSD1 gene into maize inbred lines. Shandong Agric Sci, 2013,45(7):6-8 (in Chinese with English abstract). | |
[35] | 孙超, 黎家. 油菜素甾醇类激素的生物合成、信号转导和代谢. 植物生理学报, 2017,53:291-307. |
Sun C, Li J. Biosynthesis, signal transduction and metabolism of brassinosteroids. J Plant Physiol, 2017,53:291-307 (in Chinese with English abstract). | |
[36] |
Tognetti V B, Van Aken O, Morreel K, Vandenbroucke K, van de Cotte B, De Clercq I, Chiwocha S, Fenske R, Prinsen E, Boerjan W, Genty B, Stubbs K A, Inzé D, van Breusegem F. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell, 2010,22:2660-2679.
doi: 10.1105/tpc.109.071316 pmid: 20798329 |
[1] | 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278. |
[2] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[3] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[4] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[5] | 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929. |
[6] | 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694. |
[7] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[8] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
[9] | 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98. |
[10] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85. |
[11] | 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805. |
[12] | 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258. |
[13] | 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683. |
[14] | 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612. |
[15] | 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786. |
|