欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (12): 2184-2189.doi: 10.3724/SP.J.1006.2008.02184

• 耕作栽培·生理生化 • 上一篇    下一篇

氮素穗肥对水稻幼穗细胞分裂素和生长素浓度的影响及其与颖花发育的关系

王夏雯;王绍华;李刚华;王强盛;刘正辉;余翔;丁艳锋*   

  1. 南京农业大学农业部作物生理生态重点开放实验室 / 江苏省信息农业高技术研究重点实验室,江苏南京210095
  • 收稿日期:2008-03-10 修回日期:2008-04-01 出版日期:2008-12-12 网络出版日期:2008-09-06
  • 通讯作者: 丁艳锋
  • 作者简介:王夏雯(1982-),女,甘肃平凉市人,在读硕士,主要从事水稻生理研究
  • 基金资助:

    国家自然科学基金项目(30471016);国家科技支撑计划项目(2006BAD02A03)

Effect of Panicle Nitrogen Fertilizer on Concentrations of Cytokinin and Auxin in Young Panicles of Japonica Rice and Its Relation with Spikelet Development

WANG Xia-Wen,WANG Shao-Hua,LI Gang-Hua,WANG Qiang-sheng,LIU Zheng-Hui,YU Xiang,DING Yan-Feng*   

  1. Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University / Hi-Tech Key Laboratory of Information Agriculture of Jiangsu Province, Nanjing 210095, Jiangsu, China
  • Received:2008-03-10 Revised:2008-04-01 Published:2008-12-12 Published online:2008-09-06
  • Contact: DING Yan-Feng

摘要:

以粳稻品种武育粳3号和2401为研究材料,在盆栽条件下,设高(HN)、低(LN)两个穗肥施氮水平,对幼穗发育过程中(颖花分化至抽穗后7 d)细胞分裂素(ZRs、iPAs)和生长素(IAA)含量及其动态分别进行测定和比较分析。结果表明,幼穗发育过程中穗中细胞分裂素和生长素含量均表现先降后升的趋势,穗肥的施用(HN处理)提高了各个时期细胞分裂素的含量,尤其是颖花分化期效果最为明显。而生长素的变化情况较为复杂,从颖花分化期到花粉母细胞减数分裂期前LN处理稍高于HN处理,之后HN处理又逐渐超过LN处理。穗发育期间HN处理的ZRs/IAA和iPAs/IAA均高于LN处理,颖花分化期差距最大,随后逐渐减小,到花粉母细胞减数分裂期差异最小,抽穗时比值差距又再次扩大,两个品种表现相似。水稻氮素穗肥的施用具有延长颖花分化时间、增加每穗颖花数的作用,这可能与其提高幼穗分化期尤其是颖花分化期的细胞分裂素含量及其与生长素的比值有关。

关键词: 水稻, 氮素穗肥, 激素, 每穗颖花数

Abstract:

Panicle N fertilizer, which is nitrogen fertilizer applied at panicle development stage, has great influence on the development of rice panicle. Studies have revealed that the beneficial response of nitrogen fertilizer on spikelet development is associated with the increase of spikelets number per panicle. However, little is known concerning the effect of panicle N fertilizer on endogenous hormones in rice young panicle. In the present study, two japonica rice cultivars (Wuyujing 3 and 2401) were used, and two panicle N fertilizer treatments, 120 kg N ha-1 as high nitrogen (HN) and 0 kg N ha-1 as low nitrogen (LN), were conducted to investigate the relationship between spikelets number and hormonal changes during rice panicle differentiation. The results showed that zeatin + zeatin riboside (ZRs), isopen-tenyl adenine (iPAs), and indole-3-acetic acid (IAA) concentrations were the highest at spikelet differentiation stage, sharply declined and remained almost static till heading, and recovered slightly after heading. Panicle N fertilizer treatment resulted in higher concentrations of ZRs and iPAs, especially at the spikelet differentiation stage. Whereas, IAA displayed lower concentration in HN as compared to LN. Moreover, there were higher ratios of ZRs/IAA and iPAs/IAA for HN as compared to LN during the panicle differentiation stage. The difference between them was the maximum at the spikelet differentiation stage and then declined to the minimum before heading, while there was no significant difference between two cultivars. The results suggested that the effect of panicle N fertilizer on spikelet differentiation and numbers per panicle could be associated with the changes of endogenous hormones such as ZRs, iPAs and IAA, either in their concentrations or in their ratios.

Key words: Rice, Panicle nitrogen fertilizer, Hormone, Spikelets per panicle

[1]Sakakibara H, Takei K, Hirose N. Interactions between nitro-gen and cytokinin in the regulation of metabolism and deve- lopment. Trends Plant Sci, 2006, 11: 440-448
[2]Sakakibara H. Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol, 2006, 57: 431-449
[3]Takei K. Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: Implication of cytokinin species that induces gene expression of maize response regu-lator. Plant Cell Physiol, 2001, 42: 85-93
[4]Samuelson M E, Larsson C M. Nitrate regulation of zeatin riboside levels in barley roots: Effects of inhibitors of N assimilation and comparison with ammonium. Plant Sci, 1993, 93: 77-84
[5]Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A. Cytokinin oxidase regulates rice grain produc-tion. Science, 2005, 309: 741-745
[6]Yang J-C(杨建昌), Wang G-Z(王国忠), Wang Z-Q(王志琴), Liu L-J(刘立军), Zhu Q-S(朱庆森). Grain filling characteris-tics and changes of hormonal content in the grains of dry cul-tivated rice during grain filling. Acta Agron Sin (作物学报), 2002, 28(5): 615-621 (in Chinese with English abstract)
[7]Chang E-H(常二华), Wang P(王朋), Tang C(唐成), Liu L-J(刘立军), Wang Z-Q(王志琴), Yang J-C(杨建昌). Con-centrations of cytokinin and abscisic acid in roots and grains and its relationship with grain filling and cooking quality of rice. Acta Agron Sin (作物学报), 2006, 32(4): 540-547 (in Chinese with English abstract)
[8]Zahir Z A, Asghar H N, Arshad M. Cytokinin and its precur-sors for improving growth and yield of rice. Soil Biol Bio-chem, 2001, 33: 405–408
[9]Wei Y-M(魏育明), Zheng Y-L(郑有良). The regulation of multispikelet by endogenous hormones in wheat. J Sichuan Agric Univ (四川农业大学学报), 1998, 16(2): 199–202 (in English with Chinese abstract)
[10]Qiu Z H, Wu J C, Dong B, Li D H, Gu H N. Two-way effect of pesticides on zeatin riboside content in both rice leaves and roots. Crop Prot, 2004, 23: 1131–1136
[11]Kyozuka J. Control of shoot and root meristem function by cytokinin. Curr Opin Plant Biol, 2007, 10: 442–446
[12]Jin D-M(靳德明), Wang W-J(王维金), Lan S-Y(蓝盛银), Xu Z-X(徐珍秀), Yang S-H(杨书化). Dynamic status of en-dogenous IAA, ABA and GA levels in superior and inferior spikelets of heavy panicle hybrid rice during grain filling. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2002, 28(3): 215–220 (in English with Chinese abstract)
[13]Li Z-T(李宗霆), Zhou X(周燮). Plant Hormones and Immu-noassay Technology (植物激素及其免疫检测技术). Nanjing: Jiangsu Science and Technology Press, 1996. p 179 (in Chi-nese)
[14]Sakakibara H. Nitrate-speci?c and cytokinin-mediated nitro-gen signaling pathways in plants. J Plant Res, 2003, 116: 253–257
[15]Werner T, Motyka V, Laucou V, Smets R. Cytokinin-de?cient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell, 2003, 15: 2532–2550
[16]Forde B G. Local and long-range signaling pathways regulat-ing plant responses to nitrate. Annu Rev Plant Biol, 2002, 53: 203–224
[17]Takei K. Multiple routes communicating nitrogen availability from roots to shoots: A signal transduction pathway mediated by cytokinin. J Exp Bot, 2002, 53: 971–977
[18]Miyawaki K, Matsumoto K M, Kakimoto T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabi-dopsis: Tissue speci?city and regulation by auxin, cytokinin, and nitrate. Plant J, 2004, 37: 128–138
[19]Corbesier L, Prinsen E, Jacqmard A, Lejeune P, Van Onckelen H. Cytokinin levels in leaves, leaf exudate and shoot apical meristem of Arabidopsis thaliana during ?oral transition. J Exp Bot, 2003, 54: 2511–2517
[20]Hirose N. Functional characterization and expression analysis of a gene, OsENT2, encoding an equilibrative nucleoside transporter in rice suggest a function in cytokinin transport. Plant Physiol, 2005, 138: 196–206
[21]Kyozuka J. Control of shoot and root meristem function by cytokinin. Curr Opin Plant Biol, 2007, 10: 442–446
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!