欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (07): 1092-1099.doi: 10.3724/SP.J.1006.2010.01092

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

开花后不同光周期条件下大豆农艺性状和品质性状的QTL分析

王英,程立锐**,冷建田,吴存祥,侯文胜,韩天富*   

  1. 中国农业科学院作物科学研究所/国家农作物基因资源与基因改良重大科学工程,北京100081
  • 收稿日期:2009-12-28 修回日期:2010-03-19 出版日期:2010-07-12 网络出版日期:2010-04-28
  • 通讯作者: 韩天富, E-mail: hantf@mail.caas.net.cn; Tel: 010-82108784
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB118400),国家高技术研究发展计划(2006AA100104)和农业部、财政部现代农业产业技术体系建设专项资金资助(nycytx-004).

QTL Mapping of Agronomic and Quality Traits in Soybean under Different Post-Flowering Photoperiods

WANG Ying,CHENG Li-Rui**,LENG Jian-Tian,WU Cun-Xiang,HOU Wen-Sheng,HAN Tian-Fu*   

  1. Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement,Chinese Academy of Agricultural Sciences,Beijing 100081,China
  • Received:2009-12-28 Revised:2010-03-19 Published:2010-07-12 Published online:2010-04-28
  • Contact: HAN Tian-Fu, E-mail: hantf@mail.caas.net.cn; Tel: 010-82108784

摘要: 以开花期相近的181个大豆重组自交系(RIL)为材料,研究开花后不同光照长度对大豆主要农艺性状的影响,并在利用SSR标记构建大豆遗传图谱的基础上,分别在长日(16 h)和短日(12 h)条件下检测与主要农艺性状及其光周期敏感度(PS)相关的QTL。结果表明,开花后光照处理对大豆农艺性状和品质性状有较大影响,不同性状的光周期敏感度差异明显,株高>主茎节数>蛋白质含量、脂肪含量>百粒重>单株荚数>蛋白质和脂肪总量。利用复合区间作图法检测到12个与株高、主茎节数、单株荚数、百粒重、蛋白质和脂肪总量等性状及各性状对开花后光周期处理的敏感度相关的QTL,分别定位于A1、A2、B1、B2、C1、D1a、F、L等8个连锁群上。其中,在短日条件下检测到4个QTL,可解释的遗传变异范围在11.37%~26.63%之间;在长日条件下检测到3个QTL,可解释的遗传变异范围在11.84%~27.85%之间;检测到5个与不同性状光周期敏感度有关的QTL,可解释相对应性状表型变异的范围在6.15%~21.44%之间。针对同一性状,未检测到在长日和短日条件下均起作用的主效QTL, 说明开花后光周期对大豆产量和品质性状相关基因的表达有较大影响。

关键词: 大豆, 开花后光周期, 农艺性状, 品质性状, QTL定位

Abstract: Most of agronomic and quality traits of soybean (Glycine max L. Merr.) are quantitatively inherited, and sensitive to photoperiod. In this study, 181recombinant inbred lines (RIL) of F10 generation were used to analyze the post-flowering photoperiod effects on yield and quality traits of soybean, and 129 SSR markers were used to map QTLs associated with the above traits under both long day (LD) and short day (SD) conditions and their photoperiod sensitivity (PS). The results showed that photoperiod greatly affected the performances of agronomic and quality traits of soybean, and the photoperiod sensitivity of the traits were plant height.node number on the main stem>protein content and oil content>100-seed weight>pod number per plant>total percentage of protein and oil. By using CIM (composite interval mapping) method, a total of 12 QTLs associated with the agronomic and quality traits and their sensitivity to the post-flowering photoperiod were identified and mapped on eight linkage groups including A1, A2, B1, B2, C1, D1a, F and L. Among the QTLs mentioned above, four were identified under SD and could explain 11.37%–26.63% of phenotypic variation, and three were identified under LD condition and could explain 11.84%–27.85% of phenotypic variation. The other five were associated with photoperiod sensitivity of various traits and could explain 6.15%–21.44% of phenotypic variation. For the same individual agronomic or quality trait, no major QTL was detected under both SD and LD, indicating that post-flowering photoperiod dramatically regulates the expression of genes determining yield and quality traits, and the agronomic and quality traits of soybean are sensitive to environmental factors. It was drawn that photoperiod sensitivity is a key index for adaptability improvement of soybean. For breeding elite varieties with ideal yield potential, quality and stress tolerance, the photoperiod-insensitive genes related to various traits should be explored and pyramided with other needed genes.

Key words: Soybean, Post-flowering photoperiod, Agronomic trait, Quality trait, QTL mapping

[1] Han T-F(韩天富), Gai J-Y(盖钧镒), Qiu J-X (邱家驯). A comparative study on pre- and post-flowering photoperiod response in various ecotypes of soybeans. Soybean Sci (大豆科学), 1998, 17(2): 129-134 (in Chinese with English abstract)
[2] Wang Y(王英), Wu C-X(吴存祥), Zhang X-M(张学明), Wang Y-P(王云鹏), Han T-F(韩天富). Effects of soybean major maturity genes under different photoperiods. Acta Agron Sin (作物学报), 2008, 34(7): 1160-1168 (in Chinese with English abstract)
[3] Han T-F(韩天富), Wang J-L(王金陵). Studies on the post-flowering photoperiodic responses in soybean. Acta Bot Sin (植物学报), 1995, 37(11): 863-869 (in Chinese with English abstract)
[4] Wu C, Ma Q, Yam K M, Cheung M Y, Xu Y, Han T, Lam H M, Chong K. In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max L. Merr.) flowering reversion system. Planta, 2006, 223: 725-735
[5] Kantolic A G, Slafer G A. Reproductive development and yield components in indeterminate soybean as affected by post-flowering photoperiod. Field Crops Res, 2005, 93: 212-222
[6] Han T-F(韩天富), Wang J-L(王金陵). A study on the responses of different ecotypes of Chinese soybeans to post-flowering photoperiod. Acta Agron Sin (作物学报), 1996, 22(1): 20-26(in Chinese with English abstract)
[7] Han T-F(韩天富), Wang J-L(王金陵), Fan B-B(范彬彬), Yao W-Q(姚文秋), Yang Q-K(杨庆凯). Effect of post-flowering daylength on agronomic characters of soybean. Chin J Appl Ecol (应用生态学报), 1996, 7(2): 169-173 (in Chinese with English abstract)
[8] Kantolic A G, Slafer G A. Development and seed number in indeterminate soybean as affected by timing and duration of exposure to long photoperiods after flowering. Ann Bot, 2007, 99: 925-933
[9] Kumudini S V, Pallikonda P K, Steele C. Photoperiod and E-genes influence the duration of the reproductive phase in soybean. Crop Sci, 2007, 47: 1510-1517
[10] Boote K J. Response of soybeans in different maturity groups to March planting in southern USA. Agron J, 1981, 73: 854-859
[11] Smith J R, Nelson R L. Relationship between seed-filling period and yield among soybean breeding lines. Crop Sci, 1986, 26: 469-472
[12] Sarwar G. Impact of grain filling period and other morphological traits in soybean. Soybean Genet Newsl, 1996, 23: 112-116
[13]Curtis D F, Tanner J W, Luzzi B M, Hume D J. Agronomic and phenological differences of soybean isolines differing in maturity and growth habit. Crop Sci, 2000, 40: 1624-1629
[14] Han T-F(韩天富), Wang J-L(王金陵), Yang Q-K(杨庆凯), Gai J-Y(盖钧镒). Effects of post-flowering photoperiod on chemical composition of soybeans. Sci Agric Sin (中国农业科学), 1997, 30(2): 47-53 (in Chinese with English abstract)
[15] Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642-1651
[16] Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R. Seed quality QTL in a prominent soybean population. Theor Appl Genet, 2004, 109: 552-561
[17] Xu P(徐鹏), Wang H(王慧), Li Q(李群), Gai J-Y(盖钧镒), Yu D-Y(喻德跃). Mapping QTLs related to oil content of soybeans. Hereditas (遗传), 2007, 29(1): 92-96 (in Chinese with English abstract)
[18] Sun D, Li W, Zhang Z, Chen Q, Ning H, Qiu L, Sun G. Quantitative trait loci analysis for the developmental behavior of Soybean (Glycine max L. Merr.). Theor Appl Genet, 2006, 112: 665-673
[19] Csanádi G, Vollmann J, Stift G, Lelley T. Seed quality QTLs identified in a molecular map of early maturing soybean. Theor Appl Genet, 2001, 103: 912-919
[20] Wu X -L(吴晓雷), Wang Y-J(王永军), He C-Y(贺超英), Chen S-Y(陈受宜), Gai J-Y(盖钧镒), Wang X-C(王学臣). QTLs mapping of some agronomic traits of soybean. Acta Genet Sin (遗传学报), 2001, 28(10): 947-955 (in Chinese with English abstract)
[21] Chung J, Babka H L, Graef G L, Staswick P E, Lee D J, Cregan P B, Shoemaker R C, Specht J E. The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci, 2003, 43: 1053-1067
[22] Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y, Chen S Y. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet, 2004, 108: 1131-1139
[23] Zheng Y-Z(郑永战), Gai J-Y(盖钧镒), Lu W-G(卢为国), Li W-D(李卫东), Zhou R-B(周瑞宝), Tian S-J(田少君). QTL mapping for fat and fatty acid composition contents in soybean. Acta Agron Sin (作物学报), 2006, 32(12): 1823-1830 (in Chinese with English abstract)
[24] Chen Q-S(陈庆山), Zhang Z-C(张忠臣), Liu C-Y(刘春燕), Xin D-W(辛大伟), Shan D-P(单大鹏), Qiu H-M (邱红梅), Shan C-Y(单彩云). QTL analysis of major agronomic traits in soybean. Sci Agric Sin (中国农业科学), 2007, 40(1): 41-47(in Chinese with English abstract)
[25] Wang X-Z(王贤智), Zhang X-J(张晓娟), Zhou R(周蓉), Sha A-H(沙爱华), Wu X-J(吴学军), Cai S-P(蔡淑平), Qiu D-Z(邱德珍), Zhou X-A(周新安). QTL analysis of seed and pod traits in soybean RIL population. Acta Agron Sin (作物学报), 2007, 33(3): 441-448(in Chinese with English abstract)
[26] Chapman A, Pantalone V R, Ustun A, Allen F L, Landau-Ellis D, Trigiano R N, Gresshoff P M. Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population. Euphytica, 2003, 129: 387-393
[27] Mian M A R, Ashley D A, Vencill W K, Boerma H R. QTLs conditioning early growth in a soybean population segregating for growth habit. Theor Appl Genet, 1998, 97: 1210-1216
[28] Panthee D R, Pantalone V R, West D R, Saxton A M, Sams C E. Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci, 2005,45: 2015-2022
[29] Lee S H, Bailey M A, Mian M A R, Shipe E R, Ashley D A, Parrott W A, Hussey R S, Boerma H R. Molecular markers associated with soybean plant height, lodging, and maturity across locations. Crop Sci, 1996, 36: 728-735
[30] Xin D W, Qiu H M, Shan D P, Shan C Y, Liu C Y, Hu G H, Staehelin C, Chen Q S. Analysis of quantitative trait loci underlying the period of reproductive growth stages in soybean (Glycine max L. Merr.). Euphytica, 2008, 162: 155-165
[31] Tasma I M, Lorenzen L L, Green D E, Shoemaker R C. Mapping genetic loci for flowering time, maturity, and photoperiod insensitivity in soybean. Mol Breed, 2001, 8: 25-35
[32] Han T-F(韩天富), Gai J-Y(盖钧镒), Chen F-Y(陈风云), Qiu J-X(邱家驯). Photoperiod response and agronomic characters of soybean varieties with different growth period structures. Acta Agron Sin (作物学报), 1998, 24(5): 550-557 (in Chinese with English abstract)
[33] Fehr W R, Caviness C E. Stages of Soybean Development. Agric Home Econ Exp Stn Spec Rep 80, Iowa State Univ, Ames, IA, USA, 1977

[34] Fei Z-H(费志宏), Wu C-X(吴存祥), Sun H-B(孙洪波), Hou W-S(侯文胜), Zhang B-S(张宝石), Han T-F(韩天富). Identification of photothermal responses in soybean by integrating photoperiod treatments with planting-date experiments. Acta Agron Sin (作物学报), 2009, 35(8): 1525-1531 (in Chinese with English abstract)
[35] Lander E S, Bostein D. Mapping Mendelian factors underlying quantitative traits using RFLP maps. Genetics, 1989, 121: 185-199
[36] Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122-128
[37] Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistastic effects and QTL environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99: 1255-1264
[38] Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, NakamotoY,Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K. Map-based cloning of the gene associated with soybean maturity locus E3. Genentics, 2009, 182: 1251-1262
[39] Kantolic A G, Slafer G A. Photoperiod sensitivity after flowering and seed number determination in indeterminate soybean cultivars. Field Crops Res, 2001, 72: 109-118
[40] Sinclair T R, Neumaier N, Farias J R B, Nepomuceno A L. Comparison of vegetative development in soybean cultivars for low-latitude environments. Field Crops Res, 2005, 92: 53-59
[41] Tomkins J P, Shipe E R. Environmental adaptation of long-juvenile soybean cultivars and elite strains. Agron J, 1997,89: 257-262
[42] Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2483
[43] Sourdille P, Snape J W, Cadalen T, Charmet G, Nakata N, Bernard S, Bernard M. Detection of QTLs for heading time and photoperiod response in wheat using a doubled haploid population. Genome, 2000, 43: 487-494
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[14] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[15] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!