作物学报 ›› 2011, Vol. 37 ›› Issue (09): 1623-1630.doi: 10.3724/SP.J.1006.2011.01623

• 耕作栽培·生理生化 • 上一篇    下一篇



  1. 1甘肃省干旱生境作物学重点实验室 / 甘肃农业大学农学院,甘肃兰州  730070;2甘肃农业大学林学院,甘肃兰州  730070
  • 收稿日期:2011-01-14 修回日期:2012-03-20 出版日期:2011-09-12 网络出版日期:2011-06-28
  • 通讯作者: 黄高宝, E-mail: huanggb@gsau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30771264), 国家科技支撑计划项目(2007BAD89B17)和甘肃省创新青年人才扶持计划项目资助

Water Use Characteristics of Alternately Irrigated Wheat/Maize Intercropping in Oasis Region of Northwestern China

CHAI Qiang1,YANG Cai-Hong2,HUANG Gao-Bao1,*   

  1. 1 Gansu Provincial Key Laboratory of Arid Land Crop Science / Agronomy College of Gansu Agricultural University, Lanzhou 730070, China; 2 Forestry College of Gansu Agricultural University, Lanzhou 730070, China
  • Received:2011-01-14 Revised:2012-03-20 Published:2011-09-12 Published online:2011-06-28
  • Contact: 黄高宝, E-mail: huanggb@gsau.edu.cn

摘要: 受水资源不足的严重制约,西北绿洲区以间作套种为主体的多熟种植面积被持续压缩,使单位耕地产出率和光能利用率明显下降,间作节水理论和技术研究亟待开展。交替灌溉技术节水和提高水分利用效率的作用已得到大量验证,但该技术应用到间作中能否产生节水、增效作用,缺乏理论依据。2006—2008年,在甘肃河西走廊干旱荒漠绿洲区进行田间试验,探讨了交替灌溉对小麦间作玉米产量、耗水量和水分利用效率的影响。结果表明,与单作相比,交替灌溉小麦间作玉米可显著提高土地利用效率(LER),LER达到1.22~1.52。交替灌溉与传统灌溉间作相比,LER差异不显著;对间作小麦的产量效应不显著,但使间作玉米的产量提高11.4%~36.4%,混合产量平均提高12.9%。与传统灌溉间作相比,交替灌间作未显著增加作物的耗水量,与单作小麦、单作玉米的加权平均相比高1.2%~19.4%。交替灌溉小麦间作玉米的WUE较单作小麦高12.0%~71.4%、较单作玉米高10.6%~37.8%、较传统灌小麦间作玉米高0.9%~22.5%。在河西绿洲灌区,小麦间作玉米上应用交替灌溉技术具有节水和提高WUE的可行性。

关键词: 干旱绿洲, 间作, 产量, 耗水量, 水分利用效率

Abstract: In oasis irrigation region of northwestern China, the decreasing of multiple cropping areas may lead to significant reduction of land and light use efficiencies due to serious water shortage. Therefore, water-saving irrigation is a priority in the research on theory and technology for intercropping system. Alternate irrigation is a technique to save water and enhance water use efficiency (WUE) simultaneously in common cropping systems. However, its effect is not clear on intercropping system. In 2006–2008 cropping years, we carried out a field experiment in oasis region of Hexi Corridor, Gansu Province, China under wheat/maize intercropping to disclose the effects of alternate irrigation on crop yields, water consumption, and WUE. The results showed that, compared to sole cropping treatments, there was a significant increase of land equivalent ratio (LER) in the alternately irrigated wheat/maize intercropping treatment with the LER values ranging from 1.22 to 1.52 under different irrigation levels of the intercropping treatments. However, the difference of LERs between conventionally irrigated and alternately irrigated intercropping systems was not significant at the same irrigation quota. Compared to the conventionally irrigated intercropping treatment, there was no significant change of wheat yield in the alternately irrigated intercropping treatment, but significant increase by 11.4–36.4% in maize yield. Therefore, the total yield of wheat and maize in the alternately irrigated intercropping treatment was increased by 12.9 averagely. The water consumption in the alternately irrigated intercropping treatment had no significant increase compared to that of the conventionally irrigated intercropping treatment, with 1.2–19.4% higher than the weighted average of monoculture of both crops. The WUE of alternatiely irrigated intercropping treatment was 0.9–22.5% higher than that of the conventionally irrigated intercropping treatment, and 12.0–71.4% and 10.6–37.8% higher than that of wheat and maize monoculture, respectively. These results suggest that alternate irrigation is feasible in intercropping systems in arid oasis regions with the purpose of saving water and increasing WUE.

Key words: Arid oasis, Intercropping, Yield, Water consumption, Water use efficiency

[1] Huang G-B(黄高宝). Development of light utilization theory for wheat/corn intercropping in condition of intensive cultivation. Acta Agron Sin(作物学报), 1999, 25(1): 16–24 (in Chinese with English abstract)
[2] Liu G-C(刘广才), Yang Q-F(杨祁峰), Li L(李隆), Sun J-H(孙建好). Intercropping advantage and contribution of above-and below-ground interactions in wheat-maize intercropping. J Plant Ecol (植物生态学报), 2008, 32(2): 477–484 (in Chinese with English abstract)
[3] Li L, Sun J H, Zhang F S, Li X L, Rengel Z, Yang S C. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res, 2001, 71: 123–137
[4] Zhao B-Q(赵秉强), Yu S-L(余松烈), Li F-C(李风超). Mechanism and Technology of Higher Yield Intercropped Wheat on Multiple System (间套带状小麦高产原理与技术). Beijing: China Agricultural Science and Technology Press, 2004. pp 34–49 (in Chinese)
[5] Willey R W. Intercropping—its importance and research needs: II. Agronomy and research approaches. Field Crops Abstract, 1979, 32: 73–85
[6] Lu L-S(卢良恕). China Multi-storied Agriculture Introduction (中国立体农业概论). Chengdu: Sichuan Science and Technology Press, 1999 (in Chinese)
[7] Zhao Z-X(赵致禧), Yao Z-L(姚正良), Xiao Z-W(肖占文). The planting area of wheat/maize intercropping should be reduced. Gansu Agric Sci Tech (甘肃农业科技), 2002, (4): 12–13 (in Chinese)
[8] Kang S-Z(康绍忠), Zhang J-H(张建华), Liang Z-S(梁宗锁), Hu X-T(胡笑涛), Cai H-J(蔡焕杰). The controlled alternative irrigation: a new approach for water saving regulation in farmland. Agric Res Arid Area (干旱地区农业研究), 1997, 15(1): 1–6 (in Chinese with English abstract)
[9] Kang S Z, Zhang J. Controlled alternate partial rootzone irrigation: its physiological consequences and impact on water use efficiency. J Exp Bot, 2004, 55: 2437–2446
[10] Sun H-Y(孙华银), Kang S-Z(康绍忠), Hu X-T(胡笑涛), Li Z-J(李志军). Response of greenhouse sweet pepper under alternate partial root-zone irrigation to different irrigation low limits. Trans CSAE (农业工程学报), 2008, 24(6): 78–84 (in Chinese with English abstract)
[11] Kang S Z, Liang Z S, Hu W, Zhang J-H. Water use efficiency of controlled alternate irrigation on root-divided maize plants. Agric Water Manag, 1998, 38: 69–76
[12] Du T-S(杜太生), Kang S-Z(康绍忠), Zhang J-H(张建华). Response of cotton growth and water use to different partial root zone irrigation. Sci Agric Sin (中国农业科学), 2007, 40(11): 2546–2555 (in Chinese with English abstract)
[13] Marsal J, Mata M, del Campo J, Arbones A, Vallverdù X, Girona J, Olivo N. Evaluation of partial root-zone drying for potential field use as a deficit irrigation technique in commercial vineyards according to two different pipeline layouts. Irrig Sci, 2008, 26: 347–356
[14] Du T-S(杜太生), Kang S-Z(康绍忠), Yan B-Y(闫博远), Wang F(王锋), Li Z-J(李志军). Experimental research of high-quality efficient irrigation on grape in the oasis region. Trans CSAE (农业工程学报), 2007, 23(11): 52–58 (in Chinese with English abstract)
[15] Willey R W. Intercropping—its importance and research needs: I. Competition and yield advantage. Field Crops Abstract, 1979, 32: 1–10
[16] Zhang H, Wang X, You M, Liu C. Water-yield relations and water-use efficiency of winter wheat in the North China Plain. Irrig Sci, 1999, 19: 37–45
[17] Zhang J Y, Sun J S, Duan A W, Duan A W, Wang J L, Shen X J and Liu X F. Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China. Agric Water Manag, 2007, 92: 41–47
[18] Bandyopadhyay P K, Mallick S, Rana S K. Water balance and crop coefficients of summer-grown peanut (Arachis hypogaea L.) in a humid tropical region of India. Irrig Sci, 2005, 23: 161–169
[19] Philip E, Mustafa P. Crop row spacing and its influence on the partitioning of evapotranspiration by winter-grown wheat in the northern Syria. Plant Soil, 2005, 268: 195–208
[20] Tanner C B, Sinclar T R. Efficient water use in crop production: research or re-search. In: Taylor H M, Jordan W R, Sinclair T R, eds. Limitation to Efficient Water Use in Crop Production. Madison, Wisconsin: American Society of Agronomy, 1983. pp 1–27
[21] Ye Y-L(叶优良), Xiao Y-B(肖焱波), Huang Y-F(黄玉芳), Li L(李隆). Effect of wheat/maize and faba bean/maize intercropping on water use. China Agric Sci Bull (中国农学通报), 2008, 24(3): 445–449 (in Chinese with English abstract)
[22] Morris R A, Garrity D P. Resource capture and utilization in intercropping: water. Field Crops Res, 1993, 34: 303–317
[23] Li L, Yang S C, Li X L, Zhang F S, Christie P. Interspecific complementary and competitive interactions between intercropped maize and faba bean. Plant & Soil, 1999, 212: 105–114
[24] Liu G-C(刘广才),Li L(李隆), Huang G-B(黄高宝), Sun J-H(孙建好), Guo T-W(郭天文), Zhang F-S(张福锁).Intercropping advantage and contribution of above-ground and below-ground interaction in the barley-maize intercropping. Sci Agric Sin (中国农业科学), 2005, 38(9): 1787–1795 (in Chinese with English abstract)
[25] Natarjan M, Willey R W. The effects of water stress on yield advantages of intercropping system. Field Crops Res, 1996, 13: 117–131
[26] Tsubo M, Walker S, Ogindo H O. A simulation model of cereal–legume intercropping systems for semi-arid regions: I. Model development. Field Crops Res, 2005, 93: 10–22
[27] Grema A K, Hess J M. Water balance and water use of millet-cowpea intercrops in north east Nigeria. Agric Water Manag, 1994, 26: 169–185
[28] Mandal B K. Wheat-based intercropping and effects of irrigation and mulch on growth and yield. Indian J Agron, 1991, 36: 23–29
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Full text



No Suggested Reading articles found!