作物学报 ›› 2011, Vol. 37 ›› Issue (09): 1623-1630.doi: 10.3724/SP.J.1006.2011.01623
柴强1,杨彩红2,黄高宝1,*
CHAI Qiang1,YANG Cai-Hong2,HUANG Gao-Bao1,*
摘要: 受水资源不足的严重制约,西北绿洲区以间作套种为主体的多熟种植面积被持续压缩,使单位耕地产出率和光能利用率明显下降,间作节水理论和技术研究亟待开展。交替灌溉技术节水和提高水分利用效率的作用已得到大量验证,但该技术应用到间作中能否产生节水、增效作用,缺乏理论依据。2006—2008年,在甘肃河西走廊干旱荒漠绿洲区进行田间试验,探讨了交替灌溉对小麦间作玉米产量、耗水量和水分利用效率的影响。结果表明,与单作相比,交替灌溉小麦间作玉米可显著提高土地利用效率(LER),LER达到1.22~1.52。交替灌溉与传统灌溉间作相比,LER差异不显著;对间作小麦的产量效应不显著,但使间作玉米的产量提高11.4%~36.4%,混合产量平均提高12.9%。与传统灌溉间作相比,交替灌间作未显著增加作物的耗水量,与单作小麦、单作玉米的加权平均相比高1.2%~19.4%。交替灌溉小麦间作玉米的WUE较单作小麦高12.0%~71.4%、较单作玉米高10.6%~37.8%、较传统灌小麦间作玉米高0.9%~22.5%。在河西绿洲灌区,小麦间作玉米上应用交替灌溉技术具有节水和提高WUE的可行性。
[1] Huang G-B(黄高宝). Development of light utilization theory for wheat/corn intercropping in condition of intensive cultivation. Acta Agron Sin(作物学报), 1999, 25(1): 16–24 (in Chinese with English abstract) [2] Liu G-C(刘广才), Yang Q-F(杨祁峰), Li L(李隆), Sun J-H(孙建好). Intercropping advantage and contribution of above-and below-ground interactions in wheat-maize intercropping. J Plant Ecol (植物生态学报), 2008, 32(2): 477–484 (in Chinese with English abstract) [3] Li L, Sun J H, Zhang F S, Li X L, Rengel Z, Yang S C. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res, 2001, 71: 123–137 [4] Zhao B-Q(赵秉强), Yu S-L(余松烈), Li F-C(李风超). Mechanism and Technology of Higher Yield Intercropped Wheat on Multiple System (间套带状小麦高产原理与技术). Beijing: China Agricultural Science and Technology Press, 2004. pp 34–49 (in Chinese) [5] Willey R W. Intercropping—its importance and research needs: II. Agronomy and research approaches. Field Crops Abstract, 1979, 32: 73–85 [6] Lu L-S(卢良恕). China Multi-storied Agriculture Introduction (中国立体农业概论). Chengdu: Sichuan Science and Technology Press, 1999 (in Chinese) [7] Zhao Z-X(赵致禧), Yao Z-L(姚正良), Xiao Z-W(肖占文). The planting area of wheat/maize intercropping should be reduced. Gansu Agric Sci Tech (甘肃农业科技), 2002, (4): 12–13 (in Chinese) [8] Kang S-Z(康绍忠), Zhang J-H(张建华), Liang Z-S(梁宗锁), Hu X-T(胡笑涛), Cai H-J(蔡焕杰). The controlled alternative irrigation: a new approach for water saving regulation in farmland. Agric Res Arid Area (干旱地区农业研究), 1997, 15(1): 1–6 (in Chinese with English abstract) [9] Kang S Z, Zhang J. Controlled alternate partial rootzone irrigation: its physiological consequences and impact on water use efficiency. J Exp Bot, 2004, 55: 2437–2446 [10] Sun H-Y(孙华银), Kang S-Z(康绍忠), Hu X-T(胡笑涛), Li Z-J(李志军). Response of greenhouse sweet pepper under alternate partial root-zone irrigation to different irrigation low limits. Trans CSAE (农业工程学报), 2008, 24(6): 78–84 (in Chinese with English abstract) [11] Kang S Z, Liang Z S, Hu W, Zhang J-H. Water use efficiency of controlled alternate irrigation on root-divided maize plants. Agric Water Manag, 1998, 38: 69–76 [12] Du T-S(杜太生), Kang S-Z(康绍忠), Zhang J-H(张建华). Response of cotton growth and water use to different partial root zone irrigation. Sci Agric Sin (中国农业科学), 2007, 40(11): 2546–2555 (in Chinese with English abstract) [13] Marsal J, Mata M, del Campo J, Arbones A, Vallverdù X, Girona J, Olivo N. Evaluation of partial root-zone drying for potential field use as a deficit irrigation technique in commercial vineyards according to two different pipeline layouts. Irrig Sci, 2008, 26: 347–356 [14] Du T-S(杜太生), Kang S-Z(康绍忠), Yan B-Y(闫博远), Wang F(王锋), Li Z-J(李志军). Experimental research of high-quality efficient irrigation on grape in the oasis region. Trans CSAE (农业工程学报), 2007, 23(11): 52–58 (in Chinese with English abstract) [15] Willey R W. Intercropping—its importance and research needs: I. Competition and yield advantage. Field Crops Abstract, 1979, 32: 1–10 [16] Zhang H, Wang X, You M, Liu C. Water-yield relations and water-use efficiency of winter wheat in the North China Plain. Irrig Sci, 1999, 19: 37–45 [17] Zhang J Y, Sun J S, Duan A W, Duan A W, Wang J L, Shen X J and Liu X F. Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China. Agric Water Manag, 2007, 92: 41–47 [18] Bandyopadhyay P K, Mallick S, Rana S K. Water balance and crop coefficients of summer-grown peanut (Arachis hypogaea L.) in a humid tropical region of India. Irrig Sci, 2005, 23: 161–169 [19] Philip E, Mustafa P. Crop row spacing and its influence on the partitioning of evapotranspiration by winter-grown wheat in the northern Syria. Plant Soil, 2005, 268: 195–208 [20] Tanner C B, Sinclar T R. Efficient water use in crop production: research or re-search. In: Taylor H M, Jordan W R, Sinclair T R, eds. Limitation to Efficient Water Use in Crop Production. Madison, Wisconsin: American Society of Agronomy, 1983. pp 1–27 [21] Ye Y-L(叶优良), Xiao Y-B(肖焱波), Huang Y-F(黄玉芳), Li L(李隆). Effect of wheat/maize and faba bean/maize intercropping on water use. China Agric Sci Bull (中国农学通报), 2008, 24(3): 445–449 (in Chinese with English abstract) [22] Morris R A, Garrity D P. Resource capture and utilization in intercropping: water. Field Crops Res, 1993, 34: 303–317 [23] Li L, Yang S C, Li X L, Zhang F S, Christie P. Interspecific complementary and competitive interactions between intercropped maize and faba bean. Plant & Soil, 1999, 212: 105–114 [24] Liu G-C(刘广才),Li L(李隆), Huang G-B(黄高宝), Sun J-H(孙建好), Guo T-W(郭天文), Zhang F-S(张福锁).Intercropping advantage and contribution of above-ground and below-ground interaction in the barley-maize intercropping. Sci Agric Sin (中国农业科学), 2005, 38(9): 1787–1795 (in Chinese with English abstract) [25] Natarjan M, Willey R W. The effects of water stress on yield advantages of intercropping system. Field Crops Res, 1996, 13: 117–131 [26] Tsubo M, Walker S, Ogindo H O. A simulation model of cereal–legume intercropping systems for semi-arid regions: I. Model development. Field Crops Res, 2005, 93: 10–22 [27] Grema A K, Hess J M. Water balance and water use of millet-cowpea intercrops in north east Nigeria. Agric Water Manag, 1994, 26: 169–185 [28] Mandal B K. Wheat-based intercropping and effects of irrigation and mulch on growth and yield. Indian J Agron, 1991, 36: 23–29 |
[1] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[2] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[3] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[7] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[8] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[9] | 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016. |
[10] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[11] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[12] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[13] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[14] | 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681. |
[15] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
|