欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (06): 962-970.doi: 10.3724/SP.J.1006.2012.00962

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用关联分析发掘小麦自然群体旗叶叶绿素含量的优异等位变异

李玮瑜1,2,张斌2,张嘉楠2,3,昌小平2,李润植1,*,景蕊莲2,*   

  1. 1山西农业大学, 山西太谷 030801; 2中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程 / 农业部作物种质资源利用重点开放实验室, 北京 100081; 3国家谷子改良中心 / 河北省农林科学院谷子研究所, 河北石家庄 050031
  • 收稿日期:2012-01-19 修回日期:2012-04-18 出版日期:2012-06-12 网络出版日期:2012-04-23
  • 通讯作者: 景蕊莲, E-mail: jingrl@caas.net.cn, Tel: 010-82105829; 李润植, E-mail: rli2001@hotmail.com
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2011AA100501)和国际农业研究磋商组织(CGIAR)挑战计划项目(G7010.02.01)资助

Exploring Elite Alleles for Chlorophyll Content of Flag Leaf in Natural Population of Wheat by Association Analysis

LI Wei-Yu1,2,ZHANG Bin2,ZHANG Jia-Nan2,3,CHANG Xiao-Ping2, LI Run-Zhi1,*,JING Rui-Lian2,*   

  1. 1 Agronomy College, Shanxi Agricultural University, Taigu 030801, China; 2 National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Crop Germplasm Utilization, Ministry of Agriculture / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 National Millet Improvement Center of China, Institute of Millet Crops / Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050031, China
  • Received:2012-01-19 Revised:2012-04-18 Published:2012-06-12 Published online:2012-04-23
  • Contact: 景蕊莲, E-mail: jingrl@caas.net.cn, Tel: 010-82105829; 李润植, E-mail: rli2001@hotmail.com

摘要: 为揭示小麦自然群体干旱胁迫条件下旗叶叶绿素含量的变化, 筛选相关标记的优异等位变异, 以262份小麦种质资源组成的自然群体为材料, 分别种植在北京的2个试验地点, 均设雨养和灌溉处理, 于开花期和灌浆期检测旗叶叶绿素含量。以分布于21条染色体的169个SSR标记检测所有材料的基因型, 利用STRUCTURE 2.3.2软件分析群体结构, 用TASSEL软件的MLM (mixed linear model)方法对小麦自然群体的旗叶叶绿素含量进行关联分析。在此基础上, 将携带某等位变异的所有材料表型均值与携带无效等位基因(null allele)材料表型均值比较, 估计等位变异的表型效应, 鉴别优异等位变异。共检测到2048个等位变异, 每位点2~37个等位变异, 平均12个。每位点的标记多态性信息量(PIC)为0.008~0.936, 平均0.628。在22个标记位点共检测出40个(次)与旗叶叶绿素含量极显著的关联, 其中11个标记位点有2次以上的关联, Xwmc419-1BXgwm501-2B分别有3次关联。在Xcfa2123-7AXgwm232- 1DXgwm429-2B位点分别检测到效应值大于4.0的等位变异。

关键词: 小麦, 叶绿素含量, SSR, 关联分析, 等位变异

Abstract: Elite alleles associated with chlorophyll content of flag leaf in a natural population of winter wheat (Triticum aestivum L.) consisting of 262 accessions were measured at flowering and grain-filling stages under both rainfed and well-watered conditions in two experimental locations in Beijing, China. A total of 169 SSR markers distributed on the 21 chromosomes of wheat were employed to detect the genetic diversity and genetic structure of the population. Association analysis between SSR loci and chlorophyll content trait was performed using TASSEL MLM (mixed linear model) program. The phenotypic allele effect was estimated through comparing the average phenotypic value over accessions with that of “null allele”. A total of 2048 alleles were identified on the 169 SSR loci, and each locus had 2–37 alleles with an average of 12. The polymorphism information contents (PICs) of the SSR loci ranged from 0.008 to 0.936 with an average of 0.628. Forty markers were found to be significantly associated with chlorophyll content (P<0.001) on 22 loci, of which 11 markers showed repeated associations, particularly, loci Xwmc419-1B and Xgwm501-2B had associations for three times. The alleles on loci Xcfa2123-7A, Xgwm232-1D, and Xgwm429-2B exhibited more than 4.0 of phenotypic effect value.

Key words: Wheat (Triticum aestivum L.), Chlorophyll content, SSR, Association analysis, Allelic variation

[1]Reynolds M, Foulkes M J, Slafer G A, Berry P, Parry M A J, Snape J W, Angus W J. Raising yield potential in wheat. J Exp Bot, 2009, 60: 1899?1918

[2]Borrell A K, Tao Y, Mcintyre C L. Physiological basis, QTL and MAS of the stay-green drought resistance trait in grain sorghum. CIMMYT, Mexico, DF (Mexico), 2000. pp 142?146

[3]Yang D L, Jing R L, Chang X P, Li W. Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum L.). J Integr Plant Biol, 2007, 49: 646?654

[4]Bijanzadeh E, Emam Y. Effect of defoliation and drought stress on yield components and chlorophyll content of wheat. Pak J Biol Sci, 2010, 13: 699?705

[5]Khamssi N N, Najaphy A. Comparison of photosynthetic components of wheat genotypes under rain-fed and irrigate conditions. Photochem Photobiol, 2012, 88: 76?80

[6]Jiang G H, He Y Q, Xu C G, Li X H, Zhang Q. The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor Appl Genet, 2004, 108: 688?698

[7]Jannink J L, Bink M C A M, Jansen R C. Using complex plant pedigrees to map valuable genes. Trends Plant Sci, 2001, 6: 337?342

[8]Risch N J. Searching for genetic determinants in the new millennium. Nature, 2000, 405: 847?856

[9]Zondervan K T, Cardon L R. The complex interplay among factors that influence allelic association. Nat Rev Genet, 2004, 5: 89?100

[10]de Oliveira Borba T C, Brondani R P V, Breseghello F, Coelho A S G, Mendonca J A, Rangel P H N, Brondani C. Association mapping for yield and grain quality traits in rice (Oryza sativa L). Genet Mol Biol, 2010, 33: 515?524

[11]Huang X H, Zhao Y, Wei X H, Li C, Wang A, Zhao Q, Li W J, Guo Y L, Deng L W, Zhu C R, Fan D L, Lu Y Q, Weng Q J, Liu K Y, Zhou T Y, Jing Y F, Si L Z, Dong G J, Huang T, Lu T T, Feng Q, Qian Q, Li J Y, Han B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet, 2011, 44: 32?39

[12]Kump K L, Bradury P J, Wisser R J, Buckler E S, Bclcher A R, Oropeza-Rosas M A, Zwonitzer J C, Kresovich S, McMullen M D, Ware D, Balint-Kurti P J, Holland J. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet, 2011, 43: 163?168

[13]Yan J B, Shah T, Warburton M L, Buckler E S, McMullen M D, Crouch J. Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One, 2009, 4: e8451

[14]Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165?1177

[15]Wang L F, Ge H M, Hao C Y, Dong Y S, Zhang X Y. Identifying loci influencing 1 000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PLoS One, 2012, 7: e29432

[16]Wei T-M(魏添梅), Chang X-P(昌小平), Min D-H(闵东红), Jing R-L(景蕊莲). Analysis of genetic diversity and tapping elite alleles for plant height in drought-tolerant wheat varieties. Acta Agron Sin (作物学报), 2010, 36(6): 895?904 (in Chinese with English abstract)

[17]Zhang J N, Hao C Y, Ren Q, Chang X P, Liu G R, Jing R L. Association mapping of dynamic developmental plant height in common wheat. Planta, 2011, 235: 891?902

[18]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105?1114

[19]Holland J B, Nyquist W E, Cervantes-Martínez C T. Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev, 2003, 22: 9?112

[20]Liu K, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128?2129

[21]Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611?2620

[22]Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633?2635

[23]Hardy O J, Vekemans X. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes, 2002, 2: 618?620

[24]Wen Z-X(文自翔), Zhao T-J(赵团结), Zheng Y-Z(郑永战), Liu S-H(刘顺湖), Wang C-E(王春娥), Wang F(王芳), Gai J-Y(盖钧镒). Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: I. Population structure and associated markers. Acta Agron Sin (作物学报), 2008, 34(7): 1169?1178 (in Chinese with English abstract)

[25]Wen Z-X(文自翔), Zhao T-J(赵团结), Zheng Y-Z(郑永战), Liu S-H(刘顺湖), Wang C-E(王春娥), Wang F(王芳), Gai J-Y(盖钧镒). Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: II. Exploration of elite alleles. Acta Agron Sin (作物学报), 2008, 34(8): 1339?1349 (in Chinese with English abstract)

[26]Zhang X-Y(张学勇), Tong Y-P(童依平), You G-X(游光霞), Hao C-Y(郝晨阳), Ge H-M(盖红梅), Wang L-F(王兰芬), Li B(李滨), Dong Y-C(董玉琛), Li Z-S(李振声). Hitchhiking effect mapping: A new approach for discovering agronomic important genes. Sci Agric Sin (中国农业科学), 2006, 39(8): 1526?1535 (in Chinese with English abstract)

[27]Doebley J F, Gaut B S, Smith B D. The molecular genetics of crop domestication. Cell, 2006, 127: 1309?1322

[28]Subudhi P K, Rosenow D T, Nguyen H T. Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L.): consistency across genetic backgrounds and environments. Theor Appl Genet, 2000, 101: 733?741

[29]Van Oosteerom E J, Jayachandran R, Bidinger F R. Diallel analysis of the stay-green trait and its components in sorghum. Crop Sci, 1996, 36: 540?555

[30]Walulu R S, Rosenow D T, Wester D B, Nguyen H T. Inheritance of the stay-green trait in sorghum. Crop Sci, 1994, 34: 970?972

[31]Jiang G H, He Y Q, Xu C G, Li X H, Zhang Q. The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor Appl Genet, 2004, 108: 688?698

[32]Hui Z(惠振). The Photosynthetic Characteristic of TaSG1 Wheat Mutant with Stay-Green Phenotype and the Physiological Mechanism Responsible for Stay-Green. MS Thesis of Shandong Agricultural University, 2009. p 59 (in Chinese with English abstract)

[33]Rafalski A. Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol, 2002, 5: 94?100

[34]Lou X Y, Casella G, Littell R C, Yang M C K, Johnson J A, Wu R L. A haplotype-based algorithm for multilocus linkage disequilibrium mapping of quantitative trait loci with epistasis. Genetics, 2003, 163: 1533?1548

[35]Yang D-L(杨德龙). Genetic Dissection of Quantitive Loci for Important Physiological and Agronomic Traits Associated with Drought Tolerance in Wheat (Triticum aestivum L.). PhD Dissertation of Gansu Agricultural University, 2007. pp 27?31 (in Chinese with English abstract)

[36]Jing R-L(景蕊莲), Chang X-P(昌小平), Jia J-Z(贾继增), Hu R-H(胡荣海). Establishing wheat doubled haploid population for genetic mapping by anther culture. Biotechnology (生物技术), 1999, 9(3): 4?8 (in Chinese)

[37]Zhang K, Zhang Y, Chen G, Tian J. Genetic analysis of grain yield and leaf chlorophyll content in common wheat. Cereal Res Commun, 2009, 37: 499?511

[38]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler IV E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286?289

[39]Yu J, Buckler E S. Genetic association mapping and genome organization of maize. Curr Opin Biotechnol, 2006, 17: 155?160

[40]Flint-Garcia S A, Thuillet A, Yu J, Pressoir G, Romero S M, Mitchell S E, Doebley J, Kresovich S, Goodman M. M, Buckler E S. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J, 2005, 44: 1054?1064
[1] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[2] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[3] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[4] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[5] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[6] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[7] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[8] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[9] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[10] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[11] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[12] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[15] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!