作物学报 ›› 2012, Vol. 38 ›› Issue (09): 1640-1648.doi: 10.3724/SP.J.1006.2012.01640
赖勇1,2,冯静霞1,2,司二静1,2,李葆春3,孟亚雄1,2,马小乐2,杨轲1,2,尚勋武2,王化俊1,2,*
LAI Yong1,2,FENG Jing-Xia1,2,SI Er-Jing1,2,LI Bao-Chun3,MENG Ya-Xiong1,2,MA Xiao-Le2,YANG Ke1,2,SHANG Xu-Wu2,WANG Hua-Jun1,2,*
摘要: 以96对SSR引物对BC3F2群体进行辅助筛选,构建了一组基本覆盖野生大麦ISR42-8染色体,并导入轮回亲本Scarlett的1H~7H全基因组的外源基因渗入系,为大麦QTL精细定位提供了良好的作图群体。这组渗入系一共66个,目标片段平均长度为27.6 cM,最长的系IL-52片段长度为100.5 cM,最短的系IL-50片段长度为1.5 cM。含单个渗入片段的有33个系。聚类分析结果表明,66个渗入系的遗传背景高度相似,遗传相似系数变幅为0.708~1.000,平均值为0.917。检测到一个位于4H染色体87.5 cM到110.0 cM区间的分蘖相关QTL,长度为22.5 cM,其中包含多态标记MGB396。
[1]Steven D Tanksley, Susan R. McCouch. Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 1997, 277: 1063–1064[2]Tanksley S D, Nelson J C. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet, 1996, 92: 191–203[3]Xiao J, Li J, Yuan L, Thanksley S D. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific cross. Theor Appl Genet, 1996, 92: 230–244[4]Moncada P, Martinez C P, Borrero J, Chatel M, Gauch Jr H, Guimaraes E, Tohme J, McCouch S R. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet, 2001, 102: 41–52[5]Paterson A H, Deverna J W, Lanini B, Tanksley S D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes in an interspecies cross of tomato. Genetics, 1990, 124: 735–742[6]Young N D, Tanksley S D. RFLP analysis of the size of chromosomal segments retained around Tm-2 locus of tomato during backcross breeding. Theor Appl Genet, 1989, 77: 353–359[7]Yan J B, Tang J H, Meng Y J, Ma X Q, Teng W T, Subhash C, Li L, Li J S. Improving QTL mapping resolution based on genotypic sampling-a case using a RIL population. Acta Genet Sin, 2006, 33: 617–624[8]Lin S Y, Sasaki T, Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor Appl Genet, 1998, 96: 997–1003[9]Tian F, Li D J, Fu Q, Zhu Z F, Fu Y C, Wang X K, Sun C Q. Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet, 2006, 112: 570–580[10]Pestsova E G, Borner A, Roder M S. Development of a set of Triticum aestivum–Aegilops tauschii introgression lines. Hereditas, 2001, 135: 139–143[11]Wang J, Xiang F N, Xia G M. Agropyron elongatum chromatin localization on the wheat chromosomes in an introgression line. Planta, 2005, 221: 277–286[12]Liu S B, Zhou R H, Dong Y C, Li P, Jia J Z. Development, utilization of introgression lines using a synthetic wheat as donor. Theor Appl Genet, 2006, 112: 1360-1373[13]Chetelat R T, Meglic V. Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor Appl Genet, 2000, 100: 232–241[14]Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147–1162[15]Bernacchi D, Beck-Bunn D, Emmatty D, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D. Advanced backcross QTL analysis of tomato: II. Evaluation of near isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor Appl Genet, 1998, 97: 170–180[16]Pillen K, Zacharias A, Léon J. Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet, 2003, 107: 340–352[17]Pillen K, Zacharias A, Léon J. Comparative AB-QTL analysis in barley using a single exotic donor of Hordeum vulgare ssp. spontaneum. Theor Appl Genet, 2004, 108: 1591–1601[18]Matus I, Corey A, Filichkin T, Hayes P M, Vales M I, Kling J, Riera-Lizarazu O, Sato K, Powell W, Waugh R. Development and characterization of recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Genome, 2003, 46: 1010–1023[19]Korff M V, Wang H, Léon J, Pillen K. Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet, 2004, 109: 1736–1745[20]Schmalenbach I, Körber N, Pillen K. Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theor Appl Genet, 2008, 117: 1093–1106[21]Andrew H P, Curt L B, Jonathan F W. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122–127[22]Kicherer S, Backes G, Walther U, Jahoor A. Localising QTLs for leaf rust resistance and agronomic traits in barley (Hordeum vulgare L.). Theor Appl Genet, 2000, l00: 881–888[23]Marquez-Cedillo L A, Hayes P M, Kleinhofs A, Legge W G, Rossnagel B G, Sato K, Ullrich S E, Wesenberg D M. QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet, 2001, 103: 625–637[24]Teulat B, Borries C, This D. New QTLs identified for plant water status, water-soluble carbohydrate and osmotic adjustment in a barley population grown in a growth-chamber under two water regimes. Theor Appl Genet, 2001, 103: 161–170[25]Korff M V, Wang H, Léon J, Pillen K. AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet, 2006, 112: 1221–1231[26]Korff M V, Wang H, Léon J, Pillen K. AB-QTL analysis in spring barley: I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet, 2005, 112: 1221–1231 |
[1] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[2] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[3] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[4] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[5] | 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480. |
[6] | 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521. |
[7] | 贺军与, 钟伟, 陈云琼, 王卫斌, 熊静蕾, 蒋亚丽, 施辉蒙, 陈升位. 大麦籽粒发育进程中7种黄酮类化合物的积累特性分析[J]. 作物学报, 2021, 47(8): 1624-1630. |
[8] | 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214. |
[9] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[10] | 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982. |
[11] | 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586. |
[12] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[13] | 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461. |
[14] | 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284. |
[15] | 张帆, 杨茜. 大麦-双季稻轮作体系有机物料与化肥配施对大麦资源利用效率及产量的影响[J]. 作物学报, 2021, 47(12): 2522-2531. |
|