欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (03): 537-548.doi: 10.3724/SP.J.1006.2013.00537

• 耕作栽培·生理生化 • 上一篇    下一篇

三种栽植方式下不同株型和化感特性水稻对无芒稗的干扰控制作用

徐正浩1,2,*,谢国雄3,周宇杰4,高屾1   

  1. 1 浙江大学环境与资源学院 / 浙江省亚热带土壤与植物营养重点研究实验室,浙江杭州310058;2 浙江省湖州市农业科学研究院,浙江湖州313000;3 杭州市植保土肥总站,浙江杭州310016;4 浙江省诸暨市农业技术推广中心,浙江诸暨311800
  • 收稿日期:2012-05-29 修回日期:2012-11-16 出版日期:2013-03-12 网络出版日期:2013-01-04
  • 通讯作者: 徐正浩, E-mail: 640909@zju.edu.cn
  • 基金资助:

    本研究由农业部农业公益性行业科研专项,中国博士后科学基金项目(2003034522),浙江省科技计划项目(2008C23010),浙江省教育厅科研计划项目(Y201224845),杭州市科技计划项目(20101032B03, 20101032B21)和诸暨市科技计划项目(2011BB7461)资助。

Interference of Rice with Different Morphological Types and Allelopathy on Barnyardgrass under Three Planting Patterns

XU Zheng-Hao1,2,*,XIE Guo-Xiong3,ZHOU Yu-Jie4,GAO Shen1   

  1. 1Key Laboratory of Subtropic Soil and Plant Nutrition, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China; 2Huzhou Academy of Agricultural Sciences, Huzhou 313000, China; 3General Station of Plant Protection and Soil Fertility in Hangzhou District, Hangzhou 312000, China; 4Zhuji Agricultural Technology Extension Centre in Zhejiang Province, Zhuji 311800, China
  • Received:2012-05-29 Revised:2012-11-16 Published:2013-03-12 Published online:2013-01-04
  • Contact: 徐正浩, E-mail: 640909@zju.edu.cn

摘要:

以直播、小苗移栽和大苗移栽3种栽植方式为主处理,接种和不接种稗草为裂区处理,17份不同株型和化感特性水稻材料为再裂区处理,设计了对无芒稗干扰控制田间试验。结果表明,直播和小苗移栽对无芒稗株高、分蘖和干重有较好的抑制作用,优势株型和化感特性水稻对无芒稗具有较好的干扰控制作用。30 m-2无芒稗的竞争干扰下,3种栽植方式间水稻产量差异不显著,杂草竞争干扰使水稻减产21.73%,化感作用水稻吓一跳、IR644-1-63-1-1、谷梅2号对稗草竞争力强,仍具一定产量水平。无芒稗竞争干扰对直播水稻株高、分蘖和植株干重影响大,与移栽水稻的差异显著。杂草干扰对供试水稻材料的农艺性状产生不同影响,水稻化感种质吓一跳中期分蘖强、植株高、干重大。无芒稗竞争干扰对成熟水稻株高无影响,但对分蘖、植株茎秆和穗干重差异显著。杂草竞争对3种种植方式的水稻千粒重无显著影响,但单株谷粒重以大苗移栽显著大于直播,移栽水稻的穗型较大,每穗总颖花数、每穗实粒数和结实率显著大于直播水稻。化感作用水稻谷梅2号、IR644-1-63-1-1TN1PI312777每穗颖花数不高、每穗实粒数少,化感作用水稻吓一跳每穗颖花数不高,但结实率高。水稻材料中早27、早籼浙207、早籼浙101、中早22等拥有较高的千粒重,化感作用水稻谷梅2号的千粒重显著高于IR644-1-63-1-1TN1PI312777。早籼浙101、早籼浙207和中早22等拥有较高的单株谷粒重,化感作用水稻中156的单株谷粒重显著高于谷梅2号、吓一跳、IR644-1-63-1-1TN1PI312777

关键词: 水稻栽植方式, 无芒稗, 化感, 干扰控制, 产量

Abstract:

The interference effects of 17 rice materials with different morphological and allelopathic characteristics on Echinochloa crus-galli were studied using split-split plot experiment design. Three common rice planting patterns including water direct seeding, small rice seedling transplanting and big rice seedling transplanting were designed as main treatment, and two weeding inoculations,  barnyardgrass mixture transplanting and without barnyardgrass as split treatment, and 17 rice materials as split-split treatment. The results showed that direct seeding and small seedling transplanting treatments had better inhibitory effects on plant height, tiller ability and dry weight of barnyardgrass compared with big seedling transplanting treatment. The rice with advantageous morphological and allelopathic characteristics could suppress barnyardgrass effectively. With 30 plants per square meter of barnyardgrass interference competition, the rice yield under three different planting patterns was not significantly different, with 21.73% of reduction due to weed interference. On the other hand, the allelopathic rice materials Xiayitiao, IR644-1-63-1-1 and Gumei 2 controlled barnyardgrass effectively, remaining relatively better rice yield in spite of weed infestation. Barnyardgrass competition restrained rice growth, especially in direct seeding treatment. Under such circumstances, the rice plant height, tillering ability and dry weight in most growth phases of direct seeding treatment were worse than those of transplanting treatments. The effects of weed competition on rice agronomic traits were quite different. Allelopathic rice material Xiayitiao had better tillering ability in tiller stage, and higher plant height and dry weight at most growth stages. Weed infestation could not affect the rice ultimat plant height, but influence rice tillering ability, stem and panicle dry weight remarkably. Weed competition did not change grain weight significantly under three rice planting patterns. The grain weight per rice plant in transplanting treatments was significantly greater than that in direct seeding. The panicle length, total panicle number, setting number and seed setting percentage were also notably larger than those in direct seeding. Both panicle number and setting number of allelopathic rice materials Gumei 2, IR644-1-63-1-1, TN1, and PI312777 were smaller. Although panicle number of allelopathic rice Xiayitiao was smaller, the seed setting percentage was quite higher. Rice materials Zhongzao 27, Zhe 207, Zhe 101, and Zhongzao 22 had higher 1000-grain weight. The 1000-grain weight of allelopathic rice Gumei 2 was significantly larger than those of IR644-1-63-1-1, TN1, and PI312777. The grain weight of Zhe 101, Zhe 207 and Zhongzao 22 was higher; meanwhile, the grain weight of allelopathic rice 156 was significantly larger than that of Gumei 2, Xiayitiao, IR644-1-63-1-1, TN1, and PI312777.

Key words: Rice planting patterns, Echinochloa crus-galli, Allelopathy, Interference, Yield

[1]Zhang Y-J(张亚洁), Hua J-J(华晶晶), Li Y-C(李亚超), Chen Y-Y(陈莹莹), Yang J-C(杨建昌). Effects of interaction between phosphorus nutrition and cultivation methods on grain yield and phosphorus utilization of upland rice and paddy rice. Acta Agron Sin (作物学报), 2011, 37(8): 1423–1431 (in Chinese with English abstract)



[2]Li J(李杰), Zhang H-C(张洪程), Chang Y(常勇), Gong J-L(龚金龙), Guo Z-H(郭振华), Dai Q-G(戴其根), Huo Z-Y(藿中洋), Xu K(许珂), Wei H-Y(魏海燕), Gao H(高辉). Characteristics of photosynthesis and matter production of rice with different planting methods under high-yielding cultivation condition. Acta Agron Sin (作物学报), 2011, 37(7): 1235–1248(in Chinese with English abstract)



[3]Jensen L B, Courtois B, Shin L, Li Z K, Olofsdotter M, Mauleon R P. Locating genes controlling allelopathic effects against barnyardgrass in upland rice. Agron J, 2001, 93: 21–26



[4]Olofsdotter M. Rice: a step toward use of allelopathy. Agron J, 2001, 93: 3–8



[5]Olofsdotter M, Jensen L B and Courtois B. Review: improving crop competitive ability using allelopathy—an example from rice. Plant Breed, 2002, 121: 1–9



[6]Ebana K, Yan W, Dilday R H, Namai H, Okuno K. Analysis of QTL associated with the allelopathic effect of rice using water-soluble extracts. Breed Sci, 2001, 51: 47–51



[7]Xu Z-H(徐正浩), He Y(何勇), Cui S-R(崔绍荣), Zhao M(赵明), Zhang X(张旭), Li D(李迪). Genes mapping on rice allelopathy against barnyardgrass. Chin J Appl Ecol (应用生态学报), 2003, 14(12): 2258–2260 (in Chinese with English abstract)



[8]Olofsdotter M, Rebulanan M, Madrid A, Dali W, Navarez D, Olk D C. Why phenolic acids are unlikely primary allelochemicals in rice. J Chem Ecol, 2002, 28: 229–242



[9]Hisashi K N, Takeshi I. Rice seedlings release momilactone b into the environment. Phytochemistry, 2003, 63: 551–554



[10]James R V. Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron, 2002, 58: 1631–1646



[11]Xu Z-H(徐正浩), Yu L-Q(余柳青), Zhao M(赵明), Zhang X(张旭), Fang H-M(方洪民), Wei X-H(魏兴华), Zheng K-L(郑康乐), Guo L-B(郭龙彪), Ye Y-L(叶元林). Competition and allelopathy of rice with barnyardgrass. Chin J Rice Sci (中国水稻科学),2003, 17(1): 67–72 (in Chinese with English abstract)



[12]Chung I M, Kim K H, Ahn J K, Chun S C, Kim S C, Kim J T, Kim S H. Screening of allelochemicals on barnyardgrass (Echinochloa crus-galli) and identification of potentially allelopathic compounds from rice (Oryza sativa) variety hull extracts. Crop Prot, 2002, 21: 913–920



[13]Zhang Z P. Development of chemical weed control and integrated weed management in China. Weed Biol Manag, 2003, 3: 197–203



[14]Marambe B, Amarasinghe L. Propanil-resistant barnyardgrass [Echinochloa crus-galli (L.) Beauv.] in Sri Lanka: seedling growth under different temperatures and control. Weed Biol Manag, 2002, 2: 194–199



[15]Talbert R E, Burgos N R. History and management of herbicide-resistant barnyardgrass (Echinochloa crus-galli) in Arkansas rice. Weed Tech, 2007, 21: 324–331



[16]Huang B-Q(黄炳球), Wang X-Y(王小艺). China’s rice barnyardgrass resistance is worth paying attention to. Plant Prot (植物保护), 2002, 26(1): 36–38 (in Chinese)



[17]Li Y-B(李拥兵), Huang B-Q(黄炳球). Research on the resistance of barnyardgrass. World Pestcide (世界农药), 2001, 23(3): 41–45 (in Chinese)



[18]Xu Z-H(徐正浩), Yu L-Q(余柳青). Ecological control of barnyardgrass by different morphological type rice. Chin J Rice Sci (中国水稻科学), 2000, 14(3): 125–128 (in Chinese with English abstract)



[19]Lin W-X(林文雄), He H-Q(何华勤), Dong Z-H(董章杭), Shen L-H(沈荔花), Duo Y-C(郭玉春), Liang Y-Y(梁义元), Chen F-Y(陈芳育), Liang K-J(梁康迳). Study on Developmental Inheritance of allelopathy in rice (Oryza sativa L.) under different environment. Acta Agron Sin (作物学报), 2004, 30(4): 348–353 (in Chinese with English abstract)



[20]Xiong J(熊君), Lin W-X(林文雄), Zhou J-J(周军建), Wu M-H(吴敏鸿), Chen X-X(陈祥旭), He H-Q(何华勤), Guo Y-C(郭玉春), Liang Y-Y(梁义元). Allelopathy and resources competition of rice under different nitrogen supplies. Chin J Appl Ecol (应用生态学报), 2005, 16(5): 885–889 (in Chinese with English abstract)



[21]Wang D-L(王大力), Ma R-X(马瑞霞), Liu X-F(刘秀芬). A preliminary studying on rice allelopathy germplasm. Sci Agric Sin (中国农业科学), 2000, 33: 94–96 (in Chinese with English abstract)



[22]Dilday R H, Lin J, Yan W. Identification of allelopathy in the USDA-ARS rice germplasm collection. Aust J Exp Agric, 1994, 34: 907–910



[23]Kong C-H(孔垂华), Xu X-H(徐效华), Hu F(胡飞), Chen X-H(陈雄辉), Ling B(凌冰), Tan Z-W(谭中文). Using specific secondary metabolites as markers to evaluate allelopathic potential of rice varieties and their individual plants. Chin Sci Bull (科学通报), 2002, 47(3): 203–206 (in Chinese with English abstract)



[24]Zhang F-D(张付斗), Duo Y-Q(郭怡卿), Yu L-Q(余柳青), Tao D-Y( 陶大云). Evaluation and screening of resistance to barnyardgrass in germplasm of wild rice (Oryza sativa) and African cultivar. Acta Agron Sin (作物学报), 2004, 30(11): 1140–1144 (in Chinese with English abstract)



[25]Ruan R-C(阮仁超), Han L-Z(韩龙植), Cao G-L(曹桂兰), An Y-P(安永平), Zhang Y-Y(张媛媛), Zhang Y-R(张艳蕊), Qu Y-P(曲英萍), Qi D-L(祁栋灵), Sun M-M(孙明茂). Evaluation of allelopathic potential for different type of rice germplasm on barnyardgrass. J Plant Gene Res (植物遗传资源学报), 2005, 6(4): 365–372 (in Chinese with English abstract)



[26]Xu Z-H(徐正浩), Yu L-Q(余柳青), Zhao M(赵明). Rice allelopathy to barnyardgrass. Chin J Appl Ecol (应用生态学报), 2003, 14(3): 737–740 (in Chinese with English abstract)



[27]Chung I M, Ahn J K, Yun S J. Identification of allelopathic compounds from rice (Oryza sativa L.) straw and their biological activity. Can J Plant Sci, 2001, 81: 815–819



[28]Xu Z-H(徐正浩), He Y(何勇), Zhu C-Q(诸常青), Yu G-S(俞谷松). Inhibitor effects of allelopathic rice materials on Echinochloa crus-galli and related field weeds. Chin J Appl Ecol (应用生态学报), 2005, 16(4): 958–962 (in Chinese with English abstract)



[29]Xu Z-H(徐正浩), He Y(何勇), Wang Y-P(王一平), Yu G-S(俞谷松). Interference of allelopathic rice cultivars on barnyardgrass under different water irrigation and rice plant density. Chin J Appl Ecol (应用生态学报), 2004, 15(9): 1580–1584 (in Chinese with English abstract)



[30]Li G(李贵), Wu J-L(吴竞仑), Wang Y-Z(王一专), Liu L-P(刘丽萍). Inhibitory effect of different rice varieties on weeds in paddy field. Chin J Rice Sci (中国水稻科学), 2008, 22(6): 669–672 (in Chinese with English abstract)



[31]Han H-H(韩豪华), Zhou Y-J(周勇军), Chen X(陈欣), Yu L-Q(余柳青). Inhibitory effects of mixed-planting of rice varieties with different weed-tolerant potentials on Echinochloa crus-galli. Chin J Rice Sci (中国水稻科学), 2007, 21(3): 319–322 (in Chinese with English abstract)



[32]Li G(李贵), Wu J-L(吴竞仑), Wang Y-Z(王一专), Kiu L-P(刘丽萍). Effect of transplanting density and water depth on interference of allelopathic rice in weeds. J Shanghai Jiaotong Univ (Agric Sci Edn)(上海交通大学学报•农业科学版), 2007, 25(6): 561–565 (in Chinese with English abstract)



[33]Wu J-L(吴竞仑), Li Y-F(李永丰), Chen Z-S(陈志石), Wang Y-Z(王一专). Interference of allelopathic rice Huakangcao 78 on weeds under different ecological conditions. Chin J Appl Ecol (应用生态学报), 2006, 17(9): 1645–1648 (in Chinese with English abstract)



[34]Tang Q-Y(唐启义), Feng M-G(冯明光). Practical Statistics Analyses and Computer Platform (实用统计分析和计算机平台). Beijing: Agric Press, 1979 (in Chinese)



[35]Chou C H, Lin H J. Autotoxication mechanism of Oryza sativa: I. Phytotoxic effects of decomposing rice residues in soil. J Chem Ecol, 1976, 2: 353–367



[36]Xu Z-H(徐正浩), Guo D-P(郭得平), Yu L-Q(余柳青), Zhao M(赵明), Zhang X(张旭), Li D(李迪), Zheng K-L(郑康乐), Ye Y-L(叶元林). Molecular biological study on the action mechanism of rice allelochemicals against weeds. Chin J Appl Ecol (应用生态学报), 2003, 14(5): 829–833 (in Chinese with English abstract)



[37]Salam M A, Kato-Noguchi H. Screening of allelopathic potential bangladesh rice cultivars by donor-receiver bioassay. Asian J Plant Sci, 2009, 8: 20–17



[38]Rimando A M, Olofsdotter M, Dayan F E, Duke S O. Searching for Rice Allelochemicals: An Example of Bioassay-Guided Isolation. Agron J, 2001, 93: 16–20



[39]Kong C H, Xu X H, Zhou B, Hu F, Zhang C X, Zhang M X. Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens. Phytochemistry, 2004, 65: 1123–1128



[40]Kato-Noguchi H, Ino T, Sata N, Yamamura S. Isolation and identification of a potent allelopahtic substance in rice root exudates. Physiol Plant, 2002, 115: 401–405



[41]Kong C H, Liang W J, Xu X H, Hu F, Wang P, Jiang Y. Release and activity of allelochemicals from allelopathice rice seedlings. J Agric Food Chem, 2004, 52: 2861–2865



[42]Mahmoodzadeh H, Abbasi F, Ghobzadeh Y. Allelopathic effects of root exudate and leaching of rice seedlings on hedgemustard (Sisybrium officinale). Res J Environ Sci, 2011, 5: 486–492



[43]Seal A N, Pratley J, Haig T, An M. Identification and quantitation of compounds in series of allelopathic and non-allelopathic rice root exudates. J Chem Ecol, 2004, 30: 1647–1661



[44]Salam M A, Morokuma M, Teruya T, Suenaga K, Kato-Noguchi H. Isolation and identification of a potent allelopathic substance in bangladesh rice. Plant Growth Regul, 2009, 58: 137–140



[45]Bhadora P B S. Allelopathy: A Natural Way towards Weed Management. Am J Exp Agric, 2011, 1: 7–20



[46]Kong C H, Hu F, Wang P, Wu J L. Effect of allelopathic rice varieties combined with cultural management options on paddy field weeds. Pest Manag Sci, 2008: 64: 276–282



[47]Wang Z-W(王忠武). Research progress on the resistance of barnyardgrass in paddy field. Liaoning Agric Sci (辽宁农业科学), 2006, (5): 45–47 (in Chinese)



[48]Li Y-B(李拥兵), Hu C-D(胡昌弟), Wu Z-H(吴志华), Huang B-Q(黄炳球). Study on the methods for detection of quinclorae resistance in barnyardgrass. Pestic Sci Admin (农药科学与管理), 2003, 24(11): 24–28 (in Chinese)



[49]Wu X-H(吴小虎), Liu J-L(刘君良), Zhang X-F(张晓芳), Chen Y-B(陈业兵), Cui X-Y(崔夕英), Guo H-J(郭鹤久). Progress on herbicide resistance weed research. Mod Agrochem (现代农药), 2010, 9(2): 13–17 (in Chinese with English abstract)
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!