作物学报 ›› 2013, Vol. 39 ›› Issue (11): 2039-2045.doi: 10.3724/SP.J.1006.2013.02039
高义平1,2,吕孟雨1,赵和1,杨学举2,*,王海波1,*
GAO Yi-Ping1,2,LÜ Meng-Yu1,ZHAO He1,YANG Xue-Ju2,*,WANG Hai-Bo1,*
摘要:
细胞悬浮系的中短期保存广泛需要。本文应用中花15细胞悬浮系,比较了AA、N6、MS三种固体培养基对水稻细胞悬浮系的繁殖保存效果,结果表明,AA固体培养基保存效果最好。细胞系可以在AA0培养基上4个月、在AA0.5培养基上6个月(中间45 d左右继代一次)连续保存后仍然保持其可重悬性。通过比较AA固体培养基繁殖保存、冷冻保存、连续悬浮培养3种保存方法,表明AA固体培养基繁殖保存细胞系2~9个月内,既可保持细胞的可悬浮性,又对细胞系的POD、SOD活性和植株再生率影响较小,是一种理想的细胞悬浮系中短期保存方法。
[1]Wang M(王满), Li X(李霞), Shi M-D(石牡丹), Qian B-Y(钱宝云), Wei X-D(魏晓东), Fang X-W(方先文). Optiming cell suspension culture of mature embryo of transgenic C4 phosphoenolpyruvate carboxylase (pepc) rice. Mol Plant Breed(分子植物育种), 2012, 10 (6): 644−654 (in Chinese with English abstract)[2]Wang C-Y(王藏月), Wang F-R(王凤茹), Dong J-G(董金皋). Proteomic analysis of rice suspension cultured cells treated with brassinosteroids. J Agric Univ Hebei (河北农业大学学报), 2011, 34(1): 62−67 (in Chinese with English abstract)[3]Xu L-L(徐林林), Lu D(芦笛), Lu W(陆巍), Zhang R-X(张荣铣), Yang Q(杨清). Establishment of suspension cell line of rice (Oryza sativa L.) and effects of different media on biomass. Plant Physiol Commun (植物生理学通讯). 2006, 42(4): 612−616 (in Chinese with English abstract)[4]Meijer E G M, Van I E, Schrijnemakers E, Hensgens L A M, Van Zijderveld M, Schilperoort R A. Retention of the capacity to produce plants from protoplasts in cryopreserved cell lines of rice (Oryza sativa L.). Plant Cell Rep, 1991, 10: 171−174[5]Yin D-D(尹德东), Hu B-Z(胡宝忠). Establishment and cryopreservation of rice suspension cells line. J Northeast Agric Univ (东北农业大学学报), 2006, 37 (6): 750−754 (in Chinese with English abstract)[6]Yan Q-F(严庆丰), Wang J-H(王君晖), Huang C-N(黄纯农), Yan Q-S(颜秋生), Zhang X-Q(张雪琴). Studies on cryopreservation of rice (Oryza sativa L.) suspension cultures. Acta Biol Exp Sin (实验生物学报), 1994, 27(4): 399−409 (in Chinese with English abstract)[7]Cho J S, Hong S M, Joo S Y, Yoo J S, Kim D I. Cryopreservation of transgenic rice suspension cells producing recombinant hCTLA4Ig. Appl Microbiol Biotechnol, 2007, 73: 1470−1476[8]Huang C-N(黄纯农), Wang J-H(王君晖), Yan Q-F(严庆丰), Yan Q-S(颜秋生), Zhang X-Q(张雪琴). Preservation of barley and rice cell suspension cultures in liguid nitrogen by vitrification. J Huangzhou Univ (Nat Sci)(杭州大学学报?自然科学版), 1994, 21 (1): 114−115 (in Chinese)[9]Liu F(刘峰), Wang J-H(王君晖), Huang C-N(黄纯农), Yan Q-S(颜秋生), Zhang X-Q(张雪琴). Ultrastructural changes in rice embryogenic suspension cells cryopreserved by vitrification. Chin J Rice Sci(中国水稻科学), 1998, 12 (1): 17−20 (in Chinese with English abstract)[10]Shibli R A, Haagenson D M, Cunningham S M, Berg W K, Volenec J J. Cryopreservation of alfalfa (Medicago sativa L.) cells by encapsulation-dehydration. Plant Cell Rep, 2001, 20: 445−450[11]Zeng B-Y(曾博雅), Wang Z(王智), Zhang Y-F(张云峰), Yang Q(杨清), Lu W(陆巍). Cryopreservation of rice (Oryza sativa L.) embryonic cell suspensions by encapsulation-dehydration. Plant Physiol Commun (植物生理学通讯), 2009, 45(6): 603−606 (in Chinese with English abstract)[12]Burritt D J. Efficient cryopreservation of adventitious shoots of Begonia ? erythrophylla using encapsulation-dehydration requires pretreatment with both ABA and praline. Plant Cell Tissue Organ Cult, 2008, 95: 209−215[13]Hirai D, Sakai A. Cryopreservation of in vitro-grown meristems of potato (Solanum tuberosum L.) by encapsulation-vitrification. Potato Res, 1999, 42: 153−160[14]Kong L S, von Aderkas P. A novel method of cryopreservation without a cryoprotectant for immature somatic embryos of conifer. Plant Cell Tiss Organ Cult, 2011, 106: 115−125[15]Engelmann F. In vitro conservation methods. In: Callow J A, Ford-Lloyd B V, Newbhrg H J, eds. Biotechnology and Plant Genetic Resources. Oxford: CAB International, 1997. pp 119−161[16]Wang Q C, Perl A. Cryopreservation in floricultural plants. In: Teixeira D A, Silva J A, eds. Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues. London: Global Science Books, 2006. pp 523−539[17]Harding K. Genetic integrity of cryopreserved plant cells: a review. Cryo Lett, 2004, 25: 3−22[18]Withers L A, Engelmann F. In vitro conservation of plant genetic resources. In: Altman A ed. Agricultural Biotechnology. New York, Marcel Dekker Inc., 1998. pp 57−88[19]Benson E E. Cryopreservation of phytodiversity: a critical appraisal of theory practice. Crit Rev Plant Sci, 2008, 27(3): 141−219[20]Panis B, Lambardi M. Status of cryopreservation technologies in plants (crops and forest trees). In: Ruane J, Sonnino A, eds. The Role of Biotechnology in Exploring and Protecting Agricultural Genetic Resources. Rome: FAO, 2006. pp 61−78[21]Wang B, Yin Z F, Feng C H, Shi X, Li Y P, Wang Q C. Cryopreservation of potato shoot tips. In: Benkeblia N, Tennant P, eds. Potato I. Fruit, Vegetable and Cereal Science and Biotechnology 2 (Special Issue 1). London: Global Science Book, 2008. pp 46−53[22]Feng C H, Yin Z F, Ma Y L, Zhang Z B, Chen L, Wang B, Li B Q, Huang Y S, Wang Q C. Cryopreservation of sweetpotato (Ipomoea batatas) and its pathogen eradication by cryotherapy. Biotechnol Adv, 2011, 29: 84−93[23]Moriguchi T, Kozaki I, Yamaki S, Sanada T. Low temperature storage of pear shoots in vitro. Bull Fruit Tree Res Stn, 1990, 17: 11−18[24]Wang H-B(王海波). Concept of the cell state and its significance in life science. Sci & Technol Rev (科技导报), 2008, 26 (4): 41−46 (in Chinese with English abstract)[25]Xing D-H(邢登辉), Wu Q-S(吴琴生), Liu D-J(刘大钧). The cell culture of cereal crops- induction and expression of somatic embryogenic potential. Bull Biol (生物学通报), 1994, 29(7): l−3 (in Chinese)[26]Li C-Y(李春燕), Chen S-S(陈思思), Xu W(徐雯), Li D-S(李东升), Gu X(顾骁), Zhu X-K(朱新开), Guo W-S(郭文善), Feng C-N(封超年). Effect of low temperature at seedling stage on antioxidation enzymes and cytoplasmic osmoticum of leaves in wheat cultivar Yangmai 16. Acta Agron Sin (作物学报), 2011, 37(12): 2293−2298 (in Chinese with English abstract)[27]Coppens L, Gillis E. Isoenzyme electrofocusing as a biochemical marker system of embryogenesis and organogenesis in callus tissues of Hordeumvulgare. Plant Physiol, 1987, 127: 153−158[28]Rewal S K, Mehta A R. Changes in enzyme activity and isoperoxidases in haploid tobacco callus during organogenesis. Plant Sci Lett, 1982, 24: 67−77 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|