欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (03): 353-360.doi: 10.3724/SP.J.1006.2016.00353

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

籼稻资源WD15515中抗褐飞虱QTL的定位研究

邓钊**,石少阶**,王卉颖,上官欣欣,刘丙芳,荆胜利,杜波,陈荣智,祝莉莉,何光存*   

  1. 武汉大学生命科学学院杂交水稻国家重点实验室, 湖北武汉430072
  • 收稿日期:2015-07-08 修回日期:2015-11-20 出版日期:2016-03-12 网络出版日期:2015-12-07
  • 通讯作者: 何光存, E-mail: gche@whu.edu.cn, Tel:027-68752384
  • 基金资助:

    本研究由国家自然科学基金项目(31230060)和国家重点基础研究发展计划(973计划)项目(2013CBA01403)资助。

Analysis of QTLs for Brown Planthopper Resistance in Indica Rice WD15515

DENG Zhao**,SHI Shao-Jie**,WANG Hui-Ying,SHANG-GUAN Xin-Xin,LIU Bing-Fang,JING Sheng-Li,DU Bo,CHEN Rong-Zhi,ZHU Li-Li,HE Guang-Cun*   

  1. State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
  • Received:2015-07-08 Revised:2015-11-20 Published:2016-03-12 Published online:2015-12-07
  • Contact: 何光存, E-mail: gche@whu.edu.cn, Tel:027-68752384
  • Supported by:

    This study was supported by the National Natural Science Foundation of China(31230060)and the National Basic Key Research Program(973 Program)(2013CBA01403).

摘要:

褐飞虱是我国水稻生产上最严重的虫害之一, 培育和种植抗褐飞虱水稻品种是控制褐飞虱的有效途径。WD15515是一份高抗褐飞虱的籼稻种质资源。利用9311与WD15515杂交培育了F2群体, 对F2植株进行SSR分子标记分析, 测定植株上褐飞虱的蜜露分泌量、虫体增重量和增重比, 作为抗虫性指标。通过QTL IciMapping3.0进行作图分析, 在第2、第4、第9染色体上共检测到4个抗褐飞虱QTL。其中第2染色体上检测到2个QTL, 以蜜露分泌量检测到的qBph2-1位于SSR标记RM71~RM6911之间, LOD值为3.68, 表型贡献率为11.08%;以虫体增重量和增重比检测到的qBph2-2位于标记RM6911~RM521之间, LOD值分别为3.31、4.05, 表型贡献率分别为7.81%、9.38%。以蜜露分泌量、虫体增重量和增重比为指标在第4染色体上检测到qBph4, 定位于标记RM16996~RM17075之间, LOD值分别为11.11、13.81、15.41, 表型贡献率达到44.38%、45.24%、52.40%。同样, 以蜜露分泌量、虫体增重量和增重比在第9染色体上检测到qBph9, 定位于标记RM219~RM6444之间, LOD值分别为2.59、4.04、3.63, 表型贡献率分别为10.91%、12.39%、10.01%。上述结果表明, qBph4是一个抗褐飞虱主效基因。本项研究结果为抗褐飞虱水稻育种提供了新的基因资源。

关键词: 水稻, 抗性, 褐飞虱, 数量性状基因座, 遗传图谱

Abstract:

Brownplanthopper (BPH) is one of the most destructive insect pests of rice. WD15515 is an indica germplasm highly resistant to BPH. An F2 population was developed from the cross between 9311 and WD15515. One hundred F2 plants were genotyped by using SSR markers and evaluated for BPH-resistance by measuring the honeydew weightsecreted by BPH(HW), the body weight increment (WB) and the body weight increment ratio (WRB). A total of four QTLs for BPH resistance were identified. The qBph2-1, based on HW(honeydew weight), was detected between RM71 and RM6911 on chromosome2, with LOD score of 3.68 and explaining the 11.08% of phenotypic variation. The qBph2-2, based on both WB and WRB, was mapped between RM6911 and RM521 on chromosome 2, with LOD score of 3.31 and 4.05 and explaining 7.81% and 9.38% of the phenotypic variation, respectively. The qBph4, based on HW, WB and WRB, was detected between RM16996 and RM17075 on chromosome 4, with LOD score of 11.11, 13.81, and 15.41 and explaining 44.38%, 45.24%, and 52.40% of the phenotypic variation, respectively. The qBph9, based on HW, WB, and WRB, was detected onchromosome 9 between RM219 and RM6444, with LOD score of 2.59,4.04, and 3.63. This locus explained 10.91%,12.39%, and 10.01% of the phenotypic variation in this population, respectively. qBph4 is amajorgene for BPH-resistance. This result provides thenew resources for BPH-resistance breeding.

Key words: Rice, Resistance, Brown planthopper, QTL, Genetic map

[1]HeG C, DuB, ChenR Z. Insect resistance. In:ZhangQ F,WingedsR A, eds.Genetics and Genomicsof Rice. New York: Springer, 2013.p399

[2]翟保平. 稻飞虱: 国际视野下的中国问题. 应用昆虫学报, 2011, 48: 1184–1193

Zhai B P. Rice planthoppers: A China problem under the international perspectives. Chin J Appl Entomol, 2011, 48: 1184–1193 (in Chinese with English abstract).

[3]Cheng XY, Zhu LL, He GC. Towards understanding of molecular interactions between rice and the brown planthopper. Mol Plant, 2013, 6: 621–634

[4]Du B, Zhang W L, Liu B F, Hu J, Wei Z, Shi Z Y, He R F, Zhu L L, Chen R Z, Han B, He G C.Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci USA, 2009, 106: 22163–22168.

[5]Tamura Y, Hattori M, Yoshioka H, Yoshioka M, Takahashi A, Wu J Z, Sentoku N, Yasui H. Map-based cloning and characterization of a brown planthopper resistance gene BPH26 fromOryza sativa L. ssp. indica cultivar ADR52. Sci Rep, 2014, 4:5872

[6]Liu Y, Wu H, Chen H, Wu H, Chen H, Liu Y L, He J, Kang H Y, Sun Z G, Pan G, Wang Q, Hu J L, Zhou F, Zhou K N, Zheng X M, Ren Y L, Chen L M, Wang Y H, Zhao Z G, Lin Q B, Wu F Q, Zhang X, Guo X P, Cheng X N, Jiang L, Wu C Y, Wang H Y, Wan J M. A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insectresistance in rice. NatBiotechnol, 2015, 33: 301–305

[7]Cohen M B, Alam S N, Medina E B, Bernal C C. Brownplanthopper, Nilaparvatalugens, resistance in rice cultivar IR64: mechanism and role in successful N. lugens management in Central Luzon, Philippines. EntomolExpAppl, 1997, 85: 221–229

[8]Huang Z, He G C, Shu L H, Li X H, Zhang Q F. Identification and mapping of two brown planthopper resistance genes in rice. Theor Appl Genet, 2001, 102: 929–934

[9]Xu X F, Mei H W, Luo L J, Chen X N, Li Z K. RFLP-facilitated investigation of the quantitative resistance of rice to brown planthopper (Nilaparvatalugens). Theor Appl Genet, 2002, 104: 248–253

[10]苏昌潮, 程遐年, 翟虎渠,万建民. 利用回交重组自交群体检测水稻抗褐飞虱数量性状基因座. 遗传学报, 2002, 29: 332–338

Su C C, Chen X N, Zhai H Q, Wan J M. Detection and analysis of QTL for resistance to the brown planthopper, Nilaparvatalugens (Stal), in rice (Oryzasativa L.), using backcross inbred lines.ActaGenetSin, 2002, 29: 332–338 (in Chinese with English abstract)

[11]王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35: 239–245

Wang J K. Inclusive composite interval mapping of quantitative trait genes.ActaAgronSin, 2009, 35: 239–245 (in Chinese with English abstract)

[12]李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36: 918–931

Li H H, Zhang L Y, Wang J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. ActaAgronSin, 2010, 36: 918–931 (in Chinese with English abstract).

[13]Kosambi D D. The estimation of map distances from recombination values. Ann Eugenics, 1994, 12: 172–175

[14]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14(11): 11-13

[15]McCouch S R, Teytelman L, Xu Y, Lobos K B, Clare K, Walton M, Fu B Y, Maghirang R, Li Z K, Xing Y Z. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9(6): 199–207

[16]刘光杰, 郑宜才, 桂丽琴, 沈君辉. 水稻品种抗稻飞虱鉴定方法的比较研究. 浙江农业学报, 1999, 11: 306–310

Liu G J, Zheng Y C, Gui L Q, Shen J H. A comparative study of the rice planthopper resistance identification method.Zhejiang Agric Sci, 1999, 11:306–310(in Chinese)

[17]刘国庆,颜辉煌,傅强,钱前,张志涛,翟文学,朱立煌. 栽培稻的紧穗野生稻抗褐风虱主效基因的遗传定位. 科学通报, 2001, 46: 738–742

Liu G Q, Yan H H, Fu Q, Qian Q, Zhan Z T, Zhai W X, Zhu L H. Mapping of a new gene for brown planthopper resistance in cultivated rice introgressed from Oryzaeichingeri. Chin Sci Bull, 2001, 46:1495–1462 (in Chinese)

[18]Ali M P, Chowdhury T R. Tagging andmapping of genes and QTLs of Nilaparvatalugens resistance in rice. Euphytica, 2014, 195: 1–30

[19]Qiu Y F, Guo J P, Jing S L, Zhu L L, He G C. Development and characterization of japonica rice lines carrying the brown planthopper-resistance genes BPH12 and BPH6. Theor Appl Genet, 2012, 124: 485–494

[20]Yang H Y, You A Q, Yang Z F, Zhang F, He R F, Zhu L L, He G C. High-resolution genetic mapping at the Bph15 locus for brown planthopper resistance in rice (Oryza sativa L.).Theor Appl Genet, 2004, 110: 182–191

[21]Sun L H, Su C C, Wang C M, Zhai H Q, Wan J M. Mapping of a major resistance gene to the brown planthopper in the rice cultivar RathuHeenati. BreedSci, 2005, 55: 391–396

[22]Rahman M L, Jiang W, Chu S H, Qiao Y, Ham T H, Woo M O, Lee J, Khanam M S, Chin J H, Jeung J U. High-resolution mapping of two rice brown planthopper resistance genes, Bph20(t) and Bph21(t), originating from Oryzaminuta. Theor Appl Genet, 2009, 119: 1237–1246

[23]Hirabayashi H, Ogawa T. Identification and utilization of DNA markers linked to genes for reistance to brown planthopper (BPH) in rice. Adv Breed(Japan), 1999,41:71–74

[24]Qiu Y F, Guo J P, Jing S L, Zhu L L, He G C. High-resolution mapping of the brown planthopper resistance gene Bph6 in rice and characterizing its resistance in the 9311 and Nipponbare near isogenic backgrounds. Theor Appl Genet, 2010, 121: 1601–1611

[25]Li R B, Li L S, Wei S M, Wei Y P, Chen Y Z, Bai D L, Yang L, Huang F K, Lu W L, Zhang X J, Li X Y, Yang X Q, Wei Y W. The evaluation and utilization of new genes for brown planthopper resistance in common wild rice (OryzarufipogonGriff.). Mol Plant Breed, 2006, 4:365–371

[26]Huang D, Qiu Y, Zhang Y, Huang F, Meng J, Wei S, Li R, Chen B. Fine mapping and characterization of BPH27, a brown planthopper resistance gene from wild rice (OryzarufipogonGriff.). Theor Appl Genet, 2013, 126: 219–229

[27]He J, Liu Y, Liu Y Q, Liu Y L, Jiang L, Wu H, Kang H Y, Liu S J, Chen L M, Liu X, Cheng X N, Wan J M. High-resolution mapping of brown planthopper (BPH) resistance gene Bph27(t) in rice (Oryza sativa L.). MolBreed, 2013, 31: 549–557

[28]Mei M, Zhuang C, Wan R, Wu J, Hu W, Kochert G. Genetic analysis and tagging of gene for brown planthopper resistance in indicarice. In:Rice Genetics III. Proceedings of the Third International Rice Genetics Symposium.IRRI, Los Baños, Philippines, 1996. pp16–20

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[8] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!