欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (02): 157-170.doi: 10.3724/SP.J.1006.2017.00157

• 综述 •    下一篇

作物驯化和品种改良所选择的关键基因及其特点

张学勇1,*,马琳1,郑军2   

  1. 1中国农业科学院作物科学研究所, 北京100081; 2山西省农业科学院小麦研究所, 山西临汾 041000
  • 收稿日期:2016-09-22 修回日期:2016-11-03 出版日期:2017-02-12 网络出版日期:2016-11-18
  • 通讯作者: 张学勇,E-mail:zhangxueyong@caas.cn
  • 基金资助:

    本研究由国家重点研发计划专项(2016YFD0100300)资助。

Characteristics of Genes Selected by Domestication and Intensive Breeding in Crop Plants

ZHANG Xue-Yong1,*, MA Lin1, ZHENG Jun2   

  1. 1 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Wheat Research Institute, Shanxi Academy of Agricultural Sciences, Linfen 041000, China
  • Received:2016-09-22 Revised:2016-11-03 Published:2017-02-12 Published online:2016-11-18
  • Contact: 张学勇,E-mail:zhangxueyong@caas.cn
  • Supported by:

    The Principal Investigator was supported by the National Research and Development Program (2016YFD0100300).

摘要:

 近15~20年作物基因组学迅速发展, 特别是第2代测序技术的普及, 显著降低了测序成本, 使单核苷酸多态性(SNP)分析和单元型区段(也称单倍型区段)分析渗透到生命科学的各个领域, 对系统生物学、遗传学、种质资源学和育种学影响最为深刻, 使其进入基因组学的全新时代。一批驯化选择基因的克隆, 特别是对一些控制复杂性状形成的遗传基础及其调控机制的解析, 更清晰地揭示了作物驯化和品种改良的历史, 提升了人们对育种的认知, 推动育种方法的改进。驯化和育种既有相似之处, 也存在明显的差异。驯化选择常常发生在少数关键基因或位点, 对基因的选择几乎是一步到位; 而现代作物育种虽然只有100年左右的历史, 但其对基因组影响更为强烈, 是一些重要代谢途径不断优化的过程。随着生态环境或栽培条件的变化, 育种选择目标基因(等位变异)会发生相应的变化或调整, 因此对基因(等位变异)的选择是逐步的。此外, 强烈的定向选择重塑了多倍体物种的基因组, 使其亚基因组与供体种基因组明显不同。本文在群体水平上, 系统分析了驯化和育种在作物基因组和基因中留下的踪迹, 凝炼其规律, 将为品种改良和育种提供科学理论和指导, 同时也简要介绍了“十三五”国家重点研发计划专项“主要农作物优异种质资源形成与演化规律”的基本研究思路。

关键词: 作物基因组, 驯化, 育种, 关键基因, 单元型区段

Abstract:

Crop genomics made great progress in last 15–20 years. Second generation sequencing technology has dramatically reduced the cost of genome sequencing, brought life science into the times of genomics,and strongly promoted development of system biology, genetics, breeding and genetic resources. Single nucleotide polymorphism (SNP) and haplotype block analysis are currently widely used forexploring animal and plant genetic resources and breeding. Successful isolation of many important genes help us elucidate the history of crop domestication and breeding, andpredict the future of breeding. It has been changing the breeding concepts and strategies. Most crop cultivars used today have experienced two major steps of harsh artificial selection, i.e., domestication and breeding. Despite so many similarities between domestication and breeding, they are different in some aspects. Domestication relatively affects small regions of plant genome. The dramatic reduction of diversity is usually caused by bottleneck effect.Although the breeding history is only about 100 years, it has brought tremendous alteration in most crop genomes.Breeding targets much more genes than domestication.It is very difficult for further selection of alleles at domestication targeted locus, usually only one alleleiskept, which referred as fixed. However, it is not in the case of selecting alleles at breeding targeted locus. Few alleles can be present at the same time in varient populations and rotate at the same locus in cultivars released in different periods or regions. Frequency of favored alleles in new cultivars has been increased dramatically because of positive selection. In addition,strong artificial selection usually reshapes the sub-genomes in polyploid species, which made them quite distinct from donor’s genomes. Therefore, it would be a good strategy to highlight future breeding through elucidating the basic rule of crop genome and gene in reaction to artificial selection at the targeted regions. Here, webriefly review the current major strategies for dissection of genes, haplotype blocks as well as the major genes targeted in crop domestication and breeding selection. We also give a brief introduction on the mission and strategies for “formation and evolution mechanism of funder genotypes and famous cultivars in major crops”, a newly initiated national key research and development program of China.

Key words: Cropgenome, Domestication, Breeding, Targetedgenes, Haplotypeblock

[1]ZederMA,EmshwillerE,SmithBD,BradlyDG.Identifyingcropdomestictiongenes.TrendsGenet,2006,22:139–155
[2]Ross-IbarraJ,MorrellPL,GautBS.Plantdomestication,auniqueopportunitytoidentifythegeneticbasisofadaptation.ProcNatlAcadSciUSA,2007,104:8641–8648
[3]PuruggananMD,FullerDQ.Thenatureofselectionduringplantdomestication.Nature,2009,457:843–848
[4]IzawaT,KonishiS,ShomuraA,YanoM.DNAchangestellusaboutricedomestication.CurrOpinPlantBiol,2009,12:185–192
[5]GeHM,YouGX,WangLF,HaoCY,DongYS,LiZS,ZhangXY.Genomeselectionsweepandassociationanalysisshedlightonfuturebreedingbydesigninwheat.CropSci,2002,52:1218–1228
[6LinT,ZhuGT,ZhangJH,XuXY,YuQH,ZhengZ,ZhangZH,LunYY,LiS,WangXX,HuangZJ,LiJM,ZhangCZ,WangTT,ZhangYY,WangAX,ZhangYC,LinK,LiCY,XiongGS,XueYB,MazzucatoA,CausseM,FeiZJ,GiovannoniJJ,ChetelatRT,ZamirD,StadlerT,LiJF,YeZB,DuYC,HuangSW.Genomicanalysesprovideinsightsintothehistoryoftomatobreeding.NatGenet,2014,46:1220–1226
[7]ZhouDG,ChenW,LinZC,ChenHD,WangCR,LiH,YuRB,ZhangFY,ZhenG,YiJL,LiKH,LiuYG,TerzaghiW,TangXY,HeH,ZhouSC,DengXW.Pedigree-basedanalysisofderivationofgenomesegmentsofanelitericerevealskeyregionsduringitsbreeding.PlantBiotechnolJ,2016,14:638–648
[8]DoebleyJF,GautBS,SmithBD.Themoleculargeneticsofcropdomestication.Cell,2006,127:1309–1321
[9]MeyerRS,PuruggananMD.Evolutionofcropspecies:geneticsofdomesticationanddiversification.NatRevGenet,2013,14:840–852
[10]ZhangXY,TongYP,YouGX,HaoCY,GeHM,WangLF,LiB,DongYS,LiZS.Hitchhikingeffectmapping:anewapproachfordiscoveringagronomicimportantgenes.AgricSciChina,2007,6:255–264
[11]OlsenKM,WendelJF.Abountifulharvest:Genomicinsightsintocropdomesticationphenotypes.AnnuRevPlantBiol,2013,64(4):47–70
[12]JinJ,HuangW,GaoJP,YangJ,ShiM,ZhuMZ,LuoD,LinHX.Geneticcontrolofriceplantarchitectureunderdomestication.NatGenet,2008,40:1365–1369
[13]TanLB,LiXR,LiuFX,SunXY,LiCG,ZhuZF,FuYC,CaiHW,WangXK,XieDX,SunCQ.Controlofakeytransitionfromprostratetoerectgrowthinricedomestication.NatGenet,2008,40:1360–1364[14]XieWB,WangGW,YuanM,YaoW,LyuK,ZhaoH,YangM,LiPB,ZhangX,YuanJ,WangQX,LiuF,DongHX,ZhangLJ,LiXL,MengXZ,ZhangW,XiongLZ,HeYQ,WangSP,YuSB,XuCG,LuoJ,LiXH,XiaoJH,LianXM,ZhangQF.Breedingsignaturesofriceimprovementrevealedbyagenomicvariationmapfromalargegermplasmcollection.ProcNatlAcadSciUSA,2015,112:5411–5419
[15]HouJ,JiangQY,HaoCY,WangYQ,ZhangHN,ZhangXY.Globalselectiononsucrosesynthasehaplotypesduringacenturyofwheatbreeding.PlantPhysiol,2014,164:1918–1929
[16]ShangY,MaYS,ZhouY,ZhangHM,DuanLX,ChenHM,ZengJG,ZhouQ,WangSH,GuWJ,LiuM,RenJW,GuXF,ZhangSP,WangY,YasukawaK,BouwmeesterHJ,QiXQ,ZhangZH,LucasWJ,HuangSW.Biosynthesis,regulation,anddomesticationofbitternessincucumber.Science,2014,346:1084–1088
[17]KonishiS,IzawaT,LinSY,EbanaK,FukutaY,SasakiT,YanoM.AnSNPcausedlossofseedshatteringduringricedomestication.Science,2006,312:1392–1396
[18]LiCB,ZhouAL,SangT.Ricedomesticationbyreducingshattering.Science,2006,311:1936–1939
[19LinZW,LiXR,ShannonLM,YehCT,WangML,BaiGH,PengZ,LiJR,TrickHN,ClementeTE,DoebleyJ,SchnablePS,TuinstraMR,TessoTT,WhiteF,YuJM.ParalleldomesticationoftheShattering1genesincereals.NatGenet,2012,44:720–754
[20]SimonsKJ,FellersJP,TrickHN,ZhangZC,TaiYS,GillBS,FarisJD.MolecularcharacterizationofthemajorwheatdomesticationgeneQ.Genetics,2006,172:547–555
[21]PourkheirandishM,HenselG,KilianB,SenthilN,ChenG,SameriM,AzhaguvelP,SakumaS,DhanagondS,SharmaR,MascherM,HimmelbachA,GottwaldS,NairSK,TagiriA,YukuhiroF,NagamuraY,KanamoriH,MatsumotoT,WillcoxG,MiddletonCP,WickerT,WaltherA,WaughR,FincherGB,SteinN,KumlehnJ,SatoK,KomatsudaT.Evolutionofthegraindispersalsysteminbarley.Cell,2015,162:527–539
[22]StuderA,ZhaoQ,Ross-IbarraJ,DoebleyJ.Identificationofafunctionaltransposoninsertioninthemaizedomesticationgenetb1.NatGenet,2011,43:1160–1164
[23]ZhouLL,ZhangJY,YanJB,SongRT.Twotransposableelementinsertionsarecausativemutationsforthemajordomesticationgeneteosintebranched1inmodernmaize.CellRes,2011,21:1267–1270
[24]TianZX,WangXB,LeeR,LiYH,SpechtJE,NelsonRL,McCleanPE,QiuLJ,MaJX.Artificialselectionfordeterminategrowthhabitinsoybean.ProcNatlAcadSciUSA,2010,107:8563–8568
[25]PingJQ,LiuYF,SunLJ,ZhaoMX,LiYH,SheMY,SuiY,LinF,LiuXD,TangZX,NguyenH,TianZX,QiuLJ,NelsonRL,ClementeTE,SpechtJE,MaJX.Dt2isagain-of-functionMADS-domainfactorgenethatspecifiessemideterminacyinsoybean.PlantCell,2014,26:2831–2842
[26]ZuoJR,LiJY.Moleculargeneticdissectionofquantitativetraitlociregulatingricegraindize.AnnuRevGenet,2014,48:99–118
[27]MaL,LiT,HaoCY,WangYQ,ChenXH,ZhangXY.TaGS5-3A,agrainsizegeneselectedduringwheatimprovementforlargerkernelandyield.PlantBiotechnolJ,2016,14:1269–1280
[28]CongB,BarreroLS,TanksleySD.RegulatorychangeinYABBY-liketranscriptionfactorledtoevolutionofextremefruitsizeduringtomatodomestication.NatGenet,2008,40:800–804
[29]WhittSR,WilsonLM,TenaillonMI,GautBS,BucklerES.Geneticdiversityandselectioninthemaizestarchpathway.ProcNatlAcadSciUSA,2002,99:12959–12962
[30]DingZH,WangCR,ChenS,YuSB.DiversityandselectivesweepintheOsAMT1;1genomicregionofrice.BMCEvolBiol,2011,11:1–10
[31]MaY,DaiXY,XuYY,LuoW,ZhengXM,ZengDL,PanYJ,LinXL,LiuHH,ZhangDJ,XiaoJ,GuoXY,XuSJ,NiuYD,JinJB,ZhangH,XuX,LiLG,WangW,QianQ,GeS,ChongK.COLD1conferschillingtoleranceinrice.Cell,2015,160:1209–1221
[32]TanksleySD,McCouchSR.Seedbanksandmolecularmaps:unlockinggeneticpotentialfromthewild.Science,1997,277:1063–1066
[33]WangE,WangJ,ZhuXD,HaoW,WangLY,LiQ,ZhangLX,HeW,LuBR,LinHX,MaH,ZhangGQ,HeZH.Controlofricegrain-fillingandyieldbyagenewithapotentialsignatureofdomestication.NatGenet,2008,40:1370–1374
[34]McSteenP.Auxinandmonocotdevelopment.CshPerspectBiol,2010,2:564–571
[35]LiuY,XuJX,DingYF,WangQS,LiGH,WangSH.Auxininhibitstheoutgrowthoftillerbudsinrice(OryzasativaL.)bydownregulatingOsIPTexpressionandcytokininbiosynthesisinnodes.AustJCropSci,2011,5:169–174
[36]ZhouF,LinQB,ZhuLH,RenYL,ZhouKN,ShabekN,WuFQ,MaoHB,DongW,GanL,MaWW,GaoH,ChenJ,YangC,WangD,TanJJ,ZhangX,GuoXP,WangJL,JiangL,LiuX,ChenWQ,ChuJF,YanCY,UenoK,ItoS,AsamiT,ChengZJ,WangJ,LeiCL,ZhaiHQ,WuCY,WangHY,ZhengN,WanJM.D14-SCFD3-dependentdegradationofD53regulatesstrigolactonesignalling.Nature,2013,504:406–410
[37]JiangL,LiuX,XiongGS,LiuHH,ChenFL,WangL,MengXB,LiuGF,YuH,YuanYD,YiW,ZhaoLH,MaHL,HeYZ,WuZS,MelcherK,QianQ,XuHE,WangYH,LiJY.DWARF53actsasarepressorofstrigolactonesignallinginrice.Nature,2013,504:401–405
[38]LiXY,QianQ,FuZM,WangYH,XiongGS,ZengDL,WangXQ,LiuXF,TengS,HiroshiF,YuanM,LuoD,HanB,LiJY.Controloftilleringinrice.Nature,2003,422:618–621
[39]WangWF,LiG,ZhaoJ,ChuHW,LinWH,ZhangDB,WangZY,LiangWQ.DWARFTILLER1,aWUSCHEL-relatedhomeoboxtranscriptionfactor,isrequiredfortillergrowthinrice.PLoSGenet,2014,10:e1004154
[40]XueWY,XingYZ,WengXY,ZhaoY,TangWJ,WangL,ZhouHJ,YuSB,XuCG,LiXH,ZhangQF.NaturalvariationinGhd7isanimportantregulatorofheadingdateandyieldpotentialinrice.NatGenet,2008,40:761–767
[41]AshikariM,SakakibaraH,LinSY,YamamotoT,TakashiT,NishimuraA,AngelesER,QianQ,KitanoH,MatsuokaM.Cytokininoxidaseregulatesricegrainproduction.Science,2005,309:741–745
[42LiSY,ZhaoBR,YuanDY,DuanMJ,QianQ,TangL,WangB,LiuXQ,ZhangJ,WangJ,SunJQ,LiuZ,FengYQ,YuanLP,LiCY.RicezincfingerproteinDSTenhancesgrainproductionthroughcontrollingGn1a/OsCKX2expression.ProcNatlAcadSciUSA,2013,110:3167–3172
[43]LiuL,DuYF,ShenXM,LiMF,SunW,HuangJ,LiuZJ,TaoYS,ZhengYL,YanJB,ZhangZX.KRN4controlsquantitativevariationinmaizekernelrownumber.PLoSGenet,2015,11:e1005670
[44]ZhengJ,LiuH,WangYQ,WangLF,ChangXP,JingRL,HaoCY,ZhangXY.TEF-7A,atranscriptelongationfactorgene,influencesyield-relatedtraitsinbreadwheat(TriticumaestivumL.).JExpBot,2014,65:5351–5365
[45]LiuJ,HuaW,HuZY,YangHL,ZhangL,LiRJ,DengLB,SunXC,WangXF,WangHZ.NaturalvariationinARF18genesimultaneouslyaffectsseedweightandsiliquelengthinpolyploidrapeseed.ProcNatlAcadSciUSA,2015,112:5123–5132
[46ChalhoubB,DenoeudF,LiuSY,ParkinIAP,TangHB,WangXY,ChiquetJ,BelcramH,TongCB,SamansB,CorreaM,DaSilvaC,JustJ,FalentinC,KohCS,LeClaincheI,BernardM,BentoP,NoelB,LabadieK,AlbertiA,CharlesM,ArnaudD,GuoH,DaviaudC,AlameryS,JabbariK,ZhaoMX,EdgerPP,ChelaifaH,TackD,LassalleG,MestiriI,SchnelN,LePaslierMC,FanGY,RenaultV,BayerPE,GoliczAA,ManoliS,LeeTH,ThiVHD,ChalabiS,HuQ,FanCC,TollenaereR,LuYH,BattailC,ShenJX,SidebottomCHD,WangXF,CanaguierA,ChauveauA,BerardA,DeniotG,GuanM,LiuZS,SunFM,LimYP,LyonsE,TownCD,BancroftI,WangXW,MengJL,MaJX,PiresJC,KingGJ,BrunelD,DelourmeR,RenardM,AuryJM,AdamsKL,BatleyJ,SnowdonRJ,TostJ,EdwardsD,ZhouYM,HuaW,SharpeAG,PatersonAH,GuanCY,WinckerP.Earlyallopolyploidevolutioninthepost-neolithicBrassicanapusoilseedgenome.Science,2014,345:950–953
[47]PengJR,RichardsDE,HartleyNM,MurphyGP,DevosKM,FlinthamJE,BealesJ,FishLJ,WorlandAJ,PelicaF,SudhakarD,ChristouP,SnapeJW,GaleMD,HarberdNP.‘Greenrevolution’genesencodemutantgibberellinresponsemodulators.Nature,1999,400:256–261
[48]FuXD,RichardsDE,Ait-AliT,HynesLW,OughamH,PengJR,HarberdNP.Gibberellin-mediatedproteasome-dependentdegradationofthebarleyDELLAproteinSLN1repressor.PlantCell,2002,14:3191–3200
[49]WuJ,KongXY,WanJM,LiuXY,ZhangX,GuoXP,ZhouRH,ZhaoGY,JingRL,FuXD,JiaJZ.DominantandpleiotropiceffectsofaGAIGeneinwheatresultsfromalackofinteractionbetweenDELLAandGID1.PlantPhysiol,2011,157:2120–2130
[50]杨松杰,张晓科,何中虎,夏先春,周阳.用STS标记检测矮秆基因Rht-B1b和Rht-D1b在中国小麦中的分布.中国农业科学,2006,39:1680–1688
YangSJ,ZhangXK,HeZH,XiaXC,ZhouY.DistrubitionofdwarfinggenesRht-B1binChinesebreadwheatsdetectedbySTSmarker.SciAgricSin,2006,39:1680–1688(inChinesewithEnglishabstract)
[51]AsanoK,TakashiT,MiuraK,QianQ,KitanoH,MatsuokaM,AshikariM.Geneticandmolecularanalysisofutilityofsd1allelesinricebreeding.BreedSci,2007,57:53–58
[52]WuWX,ZhengXM,LuGW,ZhongZZ,GaoH,ChenLP,WuCY,WangHJ,WangQ,ZhouKN,WangJL,WuFQ,ZhangX,GuoXP,ChengZJ,LeiCL,LinQB,JiangL,WangHY,GeS,WanJM.AssociationoffunctionalnucleotidepolymorphismsatDTH2withthenorthwardexpansionofricecultivationinAsia.ProcNatlAcadSciUSA,2013,110:277–2780
[53]YangQ,LiZ,LiWQ,KuLX,WangC,YeJR,LiK,YangN,LiYP,ZhongT,LiJS,ChenYH,YanJB,YangXH,XuML.CACTA-liketransposableelementinZmCCTattenuatedphotoperiodsensitivityandacceleratedthepostdomesticationspreadofmaize.ProcNatlAcadSciUSA,2003,110:16969–16974
[54]YanLL,LoukoianovA,TranquilliG,HelgueraM,FahimaT,DubcovskyJ.PositionalcloningofthewheatvernalizationgeneVRN1.ProcNatlAcadSciUSA,2003,100:6263–6268
[55]YanLL,LoukoianovA,BlechlA,TranquilliG,RamakrishnaW,SanMiguelP,BennetzenJL,EcheniqueV,DubcovskyJ.ThewheatVRN2geneisafloweringrepressordown-regulatedbyvernalization.Science,2004,303:1640–1644
[56]TrevaskisB,HemmingMN,PeacockWJ,DennisES.HvVRN2respondstodaylength,whereasHvVRN1isregulatedbyvernalizationanddevelopmentalstatus.PlantPhysiol,2006,140:1397–1405
[57]GuoZA,SongYX,ZhouRH,RenZL,JiaJZ.Discovery,evaluationanddistributionofhaplotypesofthewheatPpd-D1gene.NewPhytol,2010,185:841–851
[58]TurnerA,BealesJ,FaureS,DunfordRP,LaurieDA.Thepseudo-responseregulatorPpd-H1providesadaptationtophotoperiodinbarley.Science,2005,310:1031–1034
[59]StaskawiczBJ,AusubelFM,BakerBJ,EllisJG,JonesJDG.Molecular-geneticsofplant-diseaseresistance.Science,1995,268:661–667
[60]SongWY,PiLY,WangGL,GardnerJ,HolstenT,RonaldPC.EvolutionofthericeXa21diseaseresistancegenefamily.PlantCell,1997,9:1279–1287
[61]LiuYQ,WuH,ChenH,LiuYL,HeJ,KangHY,SunZG,PanG,WangQ,HuJL,ZhouF,ZhouKN,ZhengXM,RenYL,ChenLM,WangYH,ZhaoZG,LinQB,WuFQ,ZhangX,GuoXP,ChengXI,JiangL,WuCY,WangHY,WanJM.Ageneclusterencodinglectinreceptorkinasesconfersbroad-spectrumanddurableinsectresistanceinrice.NatBiotechnol,2015,33:301–305
[62]CookDE,LeeTG,GuoXL,MelitoS,WangK,BaylessAM,WangJP,HughesTJ,WillisDK,ClementeTE,DiersBW,JiangJM,HudsonME,BentAF.CopynumbervariationofmultiplegenesatRhg1mediatesnematoderesistanceinsoybean.Science,2012,338:1206–1209
[63]KrattingerSG,LagudahES,WickerT,RiskJM,AshtonAR,SelterLL,MatsumotoT,KellerB.Lr34multi-pathogenresistanceABCtransporter:molecularanalysisofhomoeologousandorthologousgenesinhexaploidwheatandothergrassspecies.PlantJ,2011,65:392–403
[64]MooreJW,Herrera-FoesselS,LanCX,SchnippenkoetterW,AyliffeM,Huerta-EspinoJ,LillemoM,ViccarsL,MilneR,PeriyannanS,KongXY,SpielmeyerW,TalbotM,BarianaH,PatrickJW,DoddsP,SinghR,LagudahE.Arecentlyevolvedhexosetransportervariantconfersresistancetomultiplepathogensinwheat.NatGenet,2015,47:1494–1498
[65]ChenM,XuZS,XiaLQ,LiLC,ChengXG,DongJH,WangQY,MaYZ.Cold-inducedmodulationandfunctionalanalysesoftheDRE-bindingtranscriptionfactorgene,GmDREB3,insoybean(GlycinemaxL.).JExpBot,2009,60:121–135
[66]JamesRA,DavenportRJ,MunnsR.PhysiologicalcharacterizationoftwogenesforNa+exclusionindurumwheat,Nax1andNax2.PlantPhysiol,2006,142:1537–1547
[67]MunnsR,JamesRA,XuB,AthmanA,ConnSJ,JordansC,ByrtCS,HareRA,TyermanSD,TesterM,PlettD,GillihamM.WheatgrainyieldonsalinesoilsisimprovedbyanancestralNa+transportergene.NatBiotechnol,2012,30:36–373
[68]JiaJZ,ZhaoSC,KongXY,LiYR,ZhaoGY,HeWM,AppelsR,PfeiferM,TaoY,ZhangXY,JingRL,ZhangC,MaYZ,GaoLF,GaoC,SpannaglM,MayerKFX,LiD,PanSK,ZhengFY,HuQ,XiaXC,LiJW,LiangQS,ChenJ,WickerT,GouCY,KuangHH,HeGY,LuoYD,KellerB,XiaQJ,LuP,WangJY,ZouHF,ZhangRZ,XuJY,GaoJL,MiddletonC,QuanZW,LiuGM,WangJ,YangHM,LiuX,HeZH,MaoL,WangJ.Aegilopstauschiidraftgenomesequencerevealsagenerepertoireforwheatadaptation.Nature,2013,496:91–95
[69]YangCW,ZhaoL,ZhangHK,YangZZ,WangH,WenSS,ZhangCY,RustgiS,vonWettsteinD,LiuB.Evolutionofphysiologicalresponsestosaltstressinhexaploidwheat.ProcNatlAcadSciUSA,2014,111:11882–11887
[70]MickelbartMV,HasegawaPM,Bailey-SerresJ.Geneticmechanismsofabioticstresstolerancethattranslatetocropyieldstability.NatRevGenet,2015,16:237–251
[71]WangLF,GeHM,HaoCY,DongYS,ZhangXY.Identifyinglociinfluencing1000-kernelweightinwheatbymicrosatellitescreeningforevidenceofselectionduringbreeding.PLoSOne,2012,7:e29432
[72]ZhangDL,HaoCY,WangLF,ZhangXY.Identifyinglociinfluencinggrainnumberbymicrosatellitescreeninginbreadwheat(TriticumaestivumL.).Planta,2012,236:1507–1517
[73]ZhangHK,ZhuB,QiB,GouXW,DongYZ,XuCM,ZhangBJ,HuangW,LiuC,WangXT,YangCW,ZhouH,KashkushK,FeldmanM,WendelJF,LiuB.EvolutionoftheBBAAcomponentofbreadwheatduringitshistoryattheallohexaploidlevel.PlantCell,2014,26:2761–2776
[74]XuK,XuX,FukaoT,CanlasP,Maghirang-RodriguezR,HeuerS,IsmailAM,Bailey-SerresJ,RonaldPC,MackillDJ.Sub1Aisanethylene-response-factor-likegenethatconferssubmergencetolerancetorice.Nature,2006,442:705–708
[75]PelemanJD,vanderVoortJR.Breedingbydesign.TrendsPlantSci,2003,8:330–334
[76]SnowdonRJ,AbbadiA,KoxT,SchmutzerT,LeckbandG.Heterotichaplotypecapture:precisionbreedingforhybridperformance.TrendsPlantSci,2015,20:410–413

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[3] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[4] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[5] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[6] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[7] 闫壮壮, 闫学慧, 石嘉, 孙凯, 虞江林, 张战国, 胡振邦, 蒋鸿蔚, 辛大伟, 李杨, 齐照明, 刘春燕, 武小霞, 陈庆山, 朱荣胜. 基于深度学习的大豆豆荚类别识别研究[J]. 作物学报, 2020, 46(11): 1771-1779.
[8] 翟胜男, 郭军, 刘成, 李豪圣, 宋健民, 刘爱峰, 曹新有, 程敦公, 李法计, 何中虎, 夏先春, 刘建军. 小麦类胡萝卜素合成途径关键基因Lcye功能分析[J]. 作物学报, 2020, 46(10): 1485-1495.
[9] 刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506.
[10] 胡文静,张勇,陆成彬,王凤菊,刘金栋,蒋正宁,王金平,朱展望,徐小婷,郝元峰,何中虎,高德荣. 小麦品种扬麦16赤霉病抗扩展QTL定位及分析[J]. 作物学报, 2020, 46(02): 157-165.
[11] 李建国,薛晓梦,张照华,王志慧,晏立英,陈玉宁,万丽云,康彦平,淮东欣,姜慧芳,雷永,廖伯寿. 单粒花生主要脂肪酸含量近红外预测模型的建立及其应用[J]. 作物学报, 2019, 45(12): 1891-1898.
[12] 张安宁,刘毅,王飞名,谢岳文,孔德艳,聂元元,张分云,毕俊国,余新桥,刘国兰,罗利军. 节水抗旱稻恢复系的抗褐飞虱分子标记辅助选育及抗性评价[J]. 作物学报, 2019, 45(11): 1764-1769.
[13] 周萍萍,颜红海,彭远英. 基于高通量GBS-SNP标记的栽培燕麦六倍体起源研究[J]. 作物学报, 2019, 45(10): 1604-1612.
[14] 单洪波,史佳文,石瑛. 四倍体马铃薯块茎蛋白含量分子标记的开发与验证[J]. 作物学报, 2018, 44(7): 1095-1102.
[15] 李玉玲,蒋正宁,胡文静,李东升,程婧晔,裔新,程晓明,吴荣林,程顺和. CIMMYT小麦种质C615抗叶锈病QTL分析[J]. 作物学报, 2018, 44(6): 836-843.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!