欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (11): 2966-2977.doi: 10.3724/SP.J.1006.2023.21063

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

不同氮利用效率小麦品种TaNRT/TaNPF家族基因表达特点

王露露1(), 仪子博1, 王浩哲1, 能芙蓉2, 马新明1, 张志勇1,*(), 王小纯1,2,*()   

  1. 1省部共建小麦玉米作物学国家重点实验室 / 河南农业大学, 河南郑州45000
    2河南农业大学生命科学学院, 河南郑州450002
  • 收稿日期:2022-09-13 接受日期:2023-04-17 出版日期:2023-11-12 网络出版日期:2023-05-16
  • 通讯作者: 王小纯, E-mail: xiaochun.w@163.com; 张志勇, E-mail: zhiyongzhang@henau.edu.cn
  • 作者简介:E-mail: wanglulu9501@163.com
  • 基金资助:
    国家自然科学基金项目(32071956)

Gene expression characteristics of TaNRT/TaNPF family in wheat cultivars with different nitrogen efficiency

WANG Lu-Lu1(), YI Zi-Bo1, WANG Hao-Zhe1, NAI Fu-Rong2, MA Xin-Ming1, ZHANG Zhi-Yong1,*(), WANG Xiao-Chun1,2,*()   

  1. 1Co-constuction State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
    2Department of Biochemistry, College of Life Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
  • Received:2022-09-13 Accepted:2023-04-17 Published:2023-11-12 Published online:2023-05-16
  • Contact: 王小纯, E-mail: xiaochun.w@163.com; 张志勇, E-mail: zhiyongzhang@henau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32071956)

摘要:

氮素是小麦生长发育的必需元素之一, NO3--N是小麦从土壤中获取氮的主要形式。NRT/NPF家族基因编码膜转运蛋白, 主要参与植物NO3--N吸收、运输及分配。为了解小麦NRT/NPF家族基因与氮素利用的关系, 选用氮高效小麦品种周麦27 (ZM27)和氮低效品种矮抗58 (AK58), 利用二代测序技术, 研究了不同氮水平(N120、N225、N330)开花期TaNRT/TaNPF家族基因在旗叶中的表达特点。结果表明, 二代测序鉴定到386个TaNRT/TaNPF家族基因; 与AK58相比, ZM27在氮减量(N120)、正常(N225)、过量(N330)条件下差异表达基因分别为27、16和23个, 上调表达基因分别为16 (59.26%)、12 (75%)和19 (82.61%)个; 减氮条件下ZM27有7个特异下调表达基因, 氮过量条件下TaNPF8.1表达量最高, 且显著上调1.5倍。可见, TaNRT/TaNPF家族基因表达水平受施氮量及品种调控。利用小麦网络数据库分析发现TaNRT/TaNPF家族基因表达具有组织特异性及染色体偏好性, 旗叶表达量最高的TaNPF8.1定位于3A染色体, 根系特异表达的TaNRT2.2和TaNRT3.1主要分布于6号染色体, 茎秆特异表达的TaNPF4.5主要分布在2号染色体。qRT-PCR分析显示TaNRT/TaNPF基因表达特点与二代转录组及网络数据结果一致。TaNPF8.1、TaNPF4.5和TaNRT3.1蛋白互作分析发现, NO3--N转运可能还需要转录因子MYB、叶绿素A-B结合蛋白、伴侣蛋白等协同参与, 为进一步研究TaNRT/TaNPF家族表达与氮素吸收利用的关系奠定了基础。

关键词: 小麦, NRT/NPF, 氮效率, 差异表达, 组织特异性

Abstract:

Nitrogen is one of the essential elements for wheat growth and development, and NO3--N is the main form of nitrogen that wheat obtains from soil. NRT/NPF genes family encode membrane transporters, which are mainly involved in NO3--N absorption, transport, and allocation in plants. In order to understand the relationship between NRT/NPF family and nitrogen utilization in wheat, the relative expression characteristic of TaNRT/TaNPF family in flag leaves of N-efficient wheat cultivars Zhoumai 27 (ZM27) and N-inefficient wheat cultivars Aikang 58 (AK58) at flowering stage were studied with the second-generation sequencing technology. The results showed that 386 genes of TaNRT/TaNPF family were identified in the second generation transcriptome database. Compared with AK58, there were 27, 16, and 23 differentially expressed genes in ZM27 in reducing (N120), normal (N225), and excessive (N330) nitrogen treatments. There were 16 (59.26%), 12 (75%), and 19 (82.61%) up-regulated genes in ZM27, respectively. Seven genes were down-regulated in ZM27 in reducing nitrogen treatment. The relative expression level of TaNPF8.1 was the highest and significantly up-regulated by 1.5 times in nitrogen excessive condition. In conclusion, the relative expression of TaNRT/TaNPF family genes was regulated by nitrogen application rate and cultivar. Wheat network database showed that the relative expression of TaNRT/TaNPF family had tissue specificity and chromosomal preference. The highest expression level of TaNPF8.1 in flag leaf was located on chromosome 3A, and the root specific expression TaNRT2.2 and TaNRT3.1 were mainly distributed on chromosome 6. The stem specific expression of TaNPF4.5 was mainly distributed on chromosome 2. The qRT-PCR of TaNRT/TaNPF genes were consistent with the results of the second-generation transcriptome and network data. Interaction analysis of TaNPF8.1, TaNPF4.5, and TaNRT3.1 revealed that NO3--N transport may also require the collaborative participation of transcription factor MYB, chlorophyll A-B binding protein, and chaperone protein. These findings laid a foundation for further studies on the relationship between TaNRT/TaNPF family expression and nitrogen uptake and utilization.

Key words: wheat, NRT/NPF, nitrogen use efficiency, different expression, tissue specificity

表1

qRT-PCR引物序列"

基因名称
Gene name
正向引物序列
Forward sequence (5′-3′)
反向引物序列
Reverse sequence (5′-3′)
NRT2.2 CCTTGGTATCATCTCCGGGC GAGGGTGACAGGAAGAGTGC
NRT3.1 CCCCCAGCTCTTCTCTTGC TCACCGGCAGCTTGGAGA
NPF4.5 AGCAGCAACCTACAAGCAGT TGGAAGCTCTCACTCCTCCA
NPF5.102D GGAAACCACGCACAGAAGC CGTGGGTGTTTTGTTCCTGTC
NPF5.101A CCCTCGTCCTGTAGCTTGAC CCAGCAGAGGACGCCATTAA
NPF8.13A TCAGAGAACGCAACCACTGT CCTGCAGGCCTTTTGATTCG
NPF8.34A ATTCCTTCTCCCTCCCCGAA GCTGGGATACTCTGCTCGGA
NPF8.34D CCCTTCCCCTTGCTTGCTTA TCGGGGTGGGAGTTGAGTTA
NPF8.31B AACGTGAAAGGGGGAGGGAT GGTTTGCCGTTGTGATTTGC
CHS2 CACCACAATAATCCTTGCTA ACTTATGACCCAATTACTGAAT
PTR1 AAGCGGGCTGATGGTGATGG CGGCGGTGACCAGGTAGAAC
POD70 CTGAGGCGAACAGCGACCTC CGGGCTCAGCTGCTTCTTGT
RPP13 TGGGTTCGGTGGCATAGGGA CCCAAGCCCGTGCTTCGTAT
ATPase CGAGGCCACCAATGACG AGTATGGTTTCAAGAAGGCGTC
TEF TCGTGGTCATTGGCCACG CAGCACAGTCAGCCTGGGAG

图1

TaNRT/TaNPF家族基因差异表达分析 A: 数据来自网络数据库(https://www.wheatproteome.org/), 蓝-白-红表示基因表达量由低到高; B: 数据来自二代转录组测序。"

图2

不同品种不同氮水平下TaNRT/TaNPF家族基因在旗叶中差异表达特点 A: 不同品种不同氮水平下TaNRT/TaNPF家族在旗叶中的差异基因数, 红箭头: 上调基因, 绿箭头: 下调基因; B: 不同氮水平下TaNRT/TaNPF上调表达基因数; C: 不同氮水平下TaNRT/TaNPF下调表达基因数."

附表1

不同氮效率小麦品种差异基因表达量分析"

类型
Type
基因名称
Gene name
AK58 N120 AK58 N225 AK58 N330 ZM27 N120 ZM27 N225 ZM27 N330
Up-regulated DEGs NPF2.3 TraesCS4A03G1098900 0.14 0.29 0.03 0.69 0.35 0.50
NPF2.11 TraesCS5A03G0008900 2.79 3.03 2.19 5.70 5.64 5.08
TraesCS5B03G0001600 2.39 2.12 2.06 5.86 6.84 5.24
TraesCS5B03G0102800 8.11 6.37 6.52 11.29 11.94 9.35
NPF4.4 TraesCS4A03G0599700 0.28 0.41 0.36 0.73 0.75 1.01
NPF5.1 TraesCS7A03G1119900 2.33 2.78 2.50 3.05 3.92 3.64
TraesCS7D03G1067400 0.50 0.82 0.56 0.64 0.79 1.05
NPF5.8 TraesCS7B03G0265800 0.28 0.39 0.27 0.56 0.50 0.56
TraesCS7D03G0440800 0.60 1.17 0.91 1.28 1.37 1.45
NPF5.10 TraesCS3A03G0903800 0.59 0.75 0.43 0.71 1.01 0.93
NPF5.13 TraesCS2D03G1323700 0.88 1.19 1.23 1.11 1.58 1.93
NPF6.2 TraesCS1B03G0077900 0.33 0.39 0.37 0.19 0.23 0.95
NPF7.3 TraesCS6D03G0593500 0.21 0.29 0.16 0.44 0.37 0.40
NPF8.1 TraesCS3A03G0922900 35.44 37.45 34.96 51.56 52.52 53.18
TraesCS3A03G0923200 3.28 3.04 3.17 5.67 6.21 5.36
TraesCS3D03G0852600 0.82 0.77 0.62 0.72 0.63 0.96
TriticumnewGene_8087 17.36 16.63 15.86 25.28 25.27 24.94
NPF8.3 TraesCS7A03G1290100 0.09 0.13 0.58 1.02 0.54 1.13
TraesCS7B03G0835300 1.98 1.99 1.65 2.60 2.77 2.73
Down-regulated DEGs NRT2.4 TraesCS7B03G0882400 5.31 4.37 4.39 0.19 0.09 0.25
NPF2.11 TraesCS5D03G0010900 2.53 1.53 1.67 1.49 1.42 1.41
NPF4.6 TraesCS5D03G0163200 2.17 1.20 1.82 1.29 0.50 0.44
NPF5.2 TraesCS4D03G0779400 1.79 1.32 1.56 1.07 0.98 1.37
NPF5.10 TraesCS2A03G1350700 1.89 2.30 2.51 0.99 1.33 1.26
TraesCS2B03G1540700 1.55 1.39 1.80 0.94 1.09 1.21
TraesCS3A03G0902900 0.93 0.83 0.89 0.52 0.72 0.64
NPF8.3 TraesCS6B03G1146900 1.10 0.98 1.38 0.54 0.79 0.92
TraesCS7B03G0839000 1.56 1.53 2.33 0.24 0.43 0.56
TraesCS7B03G0839200 7.12 7.14 6.78 4.81 5.00 4.94
NPF8.5 TraesCS2D03G0016800 2.02 1.59 1.79 1.08 1.52 1.51

图3

qRT-PCR验证转录组数据 A: 所选差异表达基因qRT-PCR检测; B: 所选基因对应的FPKM值。矮抗58: AK58; 周麦27: ZM27。N120: 减氮120 kg hm-2; N225: 正常氮225 kg hm-2; N330: 过量氮330 kg hm-2; NPF5.10-1A、NPF5.10-2D、NPF8.1-3A、NPF8.3-1B、NPF8.3-4A、NPF8.3-4D: 硝酸转运蛋白; CHS2: 查耳酮合成酶2; PR1: 致病相关蛋白1; POD70: 过氧化物酶70; RPP13: 抗病蛋白。"

图4

品种及氮水平对不同小麦组织TaNRT/TaNPF家族基因表达的影响 蓝-白-红表示基因表达量由低到高。TaNPF8.1、TaNPF4.5、TaNRT2.2、TaNRT3.1: 硝酸转运蛋白; Root: 根系; Peduncle:穂下节; Leaf: 旗叶; Sheat: 旗叶鞘; Grain: 籽粒; 缩写同图3。"

图5

TaNRT/TaNPF家族差异基因功能预测 蓝-白-红表示基因表达量由低到高。"

图6

TaNRT/TaNPF家族基因染色体定位 A: 组织特异表达TaNRT/TaNPF基因染色体定位; B: 氮调控差异表达TaNRT/TaNPF基因染色体定位。"

图7

组织特异表达的TaNRT/TaNPF的蛋白互作网络 蛋白质用节点表示, 相互作用用连线表示. 灰色: 转录因子; 黄色: 无机离子转运及代谢蛋白; 草绿色: 天冬氨酸蛋白酶; 红色: 叶绿素A-B结合蛋白; 紫色: 蛋白酶抑制剂; 绿色: 藏花酸葡糖基转移酶; 黑色: GPI-anchored蛋白; 蓝色: 花青素; 宝石蓝: 伴侣蛋白; 玫红色: 烷烃羟化酶; 浅黄色: 烟酰胺腺嘌呤二核苷酸激酶; 浅绿色: 高亲和力硝酸转运蛋白; 浅粉色: 糖基转移酶。"

[1] Kaur G, Asthir B, Bains N S. Nitrogen nutrition, its assimilation and remobilization in diverse wheat genotypes. Int J Agric Biol, 2015, 17: 531-538.
[2] Wang Y Y, Cheng Y H, Chen K E, Tsay Y F. Nitrate transport, signaling, and use efficiency. Annu Rev Plant Biol, 2018, 69: 27-66.
[3] Tegeder M, Rentsch D. Uptake and partitioning of amino acids and peptides. Mol Plant, 2010, 3: 997-1011.
doi: 10.1093/mp/ssq047 pmid: 21081651
[4] Causin H F, Barneix A J. Regulation of NH4+ uptake in wheat plants: effect of root ammonium concentration and amino acids. Plant Soil, 1993, 151: 211-218.
doi: 10.1007/BF00016286
[5] Wang H D, Wan Y F, Peter B, Robert K, Ma H X, Malcolm J. Phylogeny and gene expression of the complete nitrate transporter1/peptide transporter family in Triticum aestivum. J Exp Bot, 2020, 15: 15-30.
doi: 10.1093/jxb/15.1.15
[6] Li B, Qiu J, Jayakannan M, Bo X, Roy S J. AtNPF2.5 modulates chloride (Cl) efflux from roots of Arabidopsis thaliana. Front Plant Sci, 2017, 7: 2013-2030.
[7] Léran S, Varala K, Boyer J C, Chiurazzi M, Benot L. A unified nomenclature of nitrate transporter1/peptide transporter family members in plants. Trends Plant Sci, 2014, 19: 5-9.
doi: 10.1016/j.tplants.2013.08.008
[8] Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K. Nitrate- regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell, 2010, 18: 927-937.
doi: 10.1016/j.devcel.2010.05.008
[9] Tsay Y F, Chiu C C, Tsai C B, Ho C H, Hsu P K. Nitrate transporters and peptide transporters. FEBS Lett, 2007, 581: 2290-2300.
doi: 10.1016/j.febslet.2007.04.047
[10] Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Khaled A S, Romeis T, Hedrich R. Activity of guard cell anion channel SLAC1 is controlled by drought stress signaling kinase-phosphatase pair. Proc Natl Acad Sci USA, 2009, 106: 21425-21430.
doi: 10.1073/pnas.0912021106
[11] Chopin F, Orsel M, Dorbe M F, Chardon F, Daniel-Vedele F. The Arabidopsis AtNRT2.7 nitrate transporter controls nitrate content in seeds. Plant Cell, 2007, 19: 1590-1602.
doi: 10.1105/tpc.107.050542
[12] Lezhneva L, Kiba T, Feriabourrelier A B, Lafouge F, Boutetmercey S, Zoufan P, Sakakibara H, Vedele F, Krapp A. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. Plant J, 2015, 80: 230-241.
doi: 10.1111/tpj.12626
[13] Okamoto M, Kumar A, Li W B, Wang Y, Siddiqi M Y, Crawford N M, Glass A D M. High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-Like gene AtNRT3.1. Plant Physiol, 2006, 140: 1036-1046.
pmid: 16415212
[14] Ho C H, Lin S H, Hu H C, Tsay Y F. CHL 1 functions as a nitrate sensor in plants. Cell, 2018, 138: 1184-1194.
doi: 10.1016/j.cell.2009.07.004
[15] Nour-Eldin H H, Andersen T G, Burow M, Madsen S R, Jφrgensen M E, Olsen C E, Dreyer I, Hedrich R, Geiger D, Halkier B A. NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature, 2012, 488: 531-534.
doi: 10.1038/nature11285
[16] Segonzac C, Boyer J C, Ipotesi E, Szponarski W, Tillard P, Touraine B, Sommerer N, Rossignol M, Gibrat R. Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter. Plant Cell, 2007, 19: 3760-3777.
doi: 10.1105/tpc.106.048173 pmid: 17993627
[17] Chiba Y, Shimizu T, Miyakawa S, Kanno Y, Koshiba T, Kamiya Y, Seo M. Identification of Arabidopsis thaliana NRT1/PTR family (NPF) proteins capable of transporting plant hormones. J Plant Res, 2015, 128: 679-686.
doi: 10.1007/s10265-015-0710-2
[18] Tal I, Zhang Y, Jorgensen M E, Pisanty O, Barbosa I C, Zourelidou M, Regnault T, Crocoll C, Olsen C E, Weinstain R. The Arabidopsis NPF3 protein is a GA transporter. Nat Commun, 2016, 7: 11486-11496.
doi: 10.1038/ncomms11486
[19] Kanno Y, Kamiya Y, Mitsunori S. Nitrate does not compete with abscisic acid as a substrate of AtNPF4.6/NRT1.2/AIT1 in Arabidopsis. Plant Signal Behav, 2013, 8: 26624-26626.
doi: 10.4161/psb.26624 pmid: 24084651
[20] He Y N, Peng J S, Cai Y, Liu D F, Guan Y, Yi H Y, Gong J M. Tonoplast-localized nitrate uptake transporters involved in vacuolar nitrate efflux and reallocation in Arabidopsis. Sci Rep, 2017, 7: 6417-6426.
doi: 10.1038/s41598-017-06744-5
[21] Li J Y, Fu Y L, Pike S M, Bao J, Tian W, Zhang Y, Chen C Z, Zhang Y, Li H M, Huang J. The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell, 2010, 22: 1633-1646.
doi: 10.1105/tpc.110.075242
[22] Komarova N Y, Thor K, Gubler A, Meier S, Dietrich D, Weichert A, Grotemeyer S M, Tegeder M, Rentsch D. AtPTR1 and AtPTR5 transport dipeptides in planta. Plant Physiol, 2008, 148: 856-869.
doi: 10.1104/pp.108.123844 pmid: 18753286
[23] Xia X, Fan X, Wei J, Feng H, Xu G. Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport. J Exp Bot, 2014, 66: 317-323.
doi: 10.1093/jxb/eru425
[24] Li S B, Qian Q, Fu Z M, Zeng D L, Meng X P, Kyozuka J, Maekawa M, Zhu X D, Zhang J, Li J Y, Wang Y F. Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant J, 2009, 58: 592-605.
doi: 10.1111/tpj.2009.58.issue-4
[25] Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet, 2015, 47: 834-838.
doi: 10.1038/ng.3337
[26] Jie O, Cai Z, Xia K, Wang Y, Duan J, Zhang M. Identification and analysis of eight peptide transporter homologs in rice. Plant Sci, 2010, 179: 374-382.
doi: 10.1016/j.plantsci.2010.06.013
[27] Zhong T, Yi C, Fei C, Ji Y, Zhao F J. OsPTR7 (OsNPF8.1), a putative peptide transporter in rice, is involved in dimethylarsenate accumulation in rice grain. Plant Cell Physiol, 2017, 58: 904-913.
doi: 10.1093/pcp/pcx029 pmid: 28340032
[28] Liu B H, Wu J Y, Yang S Q, Schiefelbein J, Gan Y B. Nitrate regulation of lateral root and root hair development in plants. J Exp Bot, 2020, 71: 4405-4414.
doi: 10.1093/jxb/erz536 pmid: 31796961
[29] 韦一昊. 小麦谷氨酰胺合成酶同工酶的定位、表达与功能研究. 河南农业大学博士学位论文,河南郑州, 2021.
Wei Y H. Localization, Expression and Function of Glutamine Synthase Isoenzyme in Wheat. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2021.
[30] Li B J, Zhang B Q, Wang J Y, Tsai W C, Lu H C, Zou L H, Wan X, Zhang D Y, Qiao H J, Liu Z J. New insight into the molecular mechanism of colour differentiation among floral segments in orchids. Commun Biol, 2020, 3: 1-13.
doi: 10.1038/s42003-019-0734-6
[31] Kim T J, Park S Y, Lim S H, Yeo Y, Cho H S, Ha S H. Comparative metabolic profiling of pigmented rice (Oryza sativa L.)cultivars reveals primary metabolites are correlated with secondary metabolites. J Cereal Sci, 2013, 57: 14-20.
doi: 10.1016/j.jcs.2012.09.012
[32] Li J, Zhao S, Yu X, Du W, Ruan C. Role of Xanthoceras sorbifolium MYB44 in tolerance to combined drought and heat stress via modulation of stomatal closure and ROS homeostasis. New Phytol, 2021, 162: 410-420.
[33] Tegeder M, Masclaux-Daubresse C. Source and sink mechanisms of nitrogen transport and use. New Phytol, 2018, 217: 35-53.
doi: 10.1111/nph.14876 pmid: 29120059
[1] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[2] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[3] 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体Xu1801的鉴定及其矮化效应分析[J]. 作物学报, 2023, 49(8): 2133-2143.
[4] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[5] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[6] 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258.
[7] 林芬芳, 陈星宇, 周维勋, 王倩, 张东彦. 基于堆栈稀疏自编码器的小麦赤霉病高光谱遥感检测[J]. 作物学报, 2023, 49(8): 2275-2287.
[8] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[9] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[10] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
[11] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[12] 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817.
[13] 冯连杰, 于振文, 张永丽, 石玉. 灌溉对小麦分蘖发生和不同茎蘖光合同化物生产分配及成穗的影响[J]. 作物学报, 2023, 49(6): 1653-1667.
[14] 王昊, 孙妮娜, 王矗, 肖露凝, 肖蓓, 李栋, 刘洁, 秦冉, 吴永振, 孙晗, 赵春华, 李林志, 崔法, 刘伟. 烟农系列小麦高产遗传基础解析[J]. 作物学报, 2023, 49(6): 1584-1600.
[15] 高欣, 郭雷, 单宝雪, 肖延军, 刘秀坤, 李豪圣, 刘建军, 赵振东, 曹新有. 淀粉颗粒类型及其比例在小麦品质特性形成与改良中的作用[J]. 作物学报, 2023, 49(6): 1447-1454.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .