• •
刘迪1,黎瑞源2,石茂竹1,李洪有1,陈庆富1,石桃雄1,*
LIU Di1,LI Rui-Yuan2,SHI Mao-Zhu1,LI Hong-You1,CHEN Qing-Fu1,SHI Tao-Xiong1,*
摘要:
株高是苦荞重要的农艺性状之一,与抗倒伏能力、光合作用效率以及产量形成等密切相关。矮化通常有利于提高苦荞的抗倒伏性能,进而提升产量。为了探明突变体sd3的矮化机理,为苦荞株高分子调控机制研究及其育种应用提供科学依据,本研究对前期经EMS诱变获得的苦荞半矮秆突变体sd3进行了表型鉴定和转录组分析。结果表明,与野生型相比,sd3成熟期的株高降低28.43%,主茎节数降低44.44%,主茎节数减少是导致sd3矮化的主要原因。茎秆细胞学形态观察显示,sd3细胞横向分裂能力更强,导致其茎秆壁显著增厚,茎节变粗。sd3对赤霉素敏感,外源GA3可恢复其表型。对苗期茎秆进行转录组学分析,成功鉴定到3067个差异表达基因(DEGs)。GO功能和KEGG通路富集筛选出57个株高调控基因。其中,赤霉素信号转导途径中的GID1在sd3中上调表达,GID2、UNE10和PIF1在sd3中均下调表达,推测这些DEGs在sd3矮化形成过程中起着重要作用。本研究结果初步阐明了sd3致矮机理,为苦荞抗倒伏品种选育及株高性状的遗传改良提供了重要的候选基因,有助于推动苦荞遗传育种工作的高效开展。
[1] 陈庆富. 荞麦生产状况及新类型栽培荞麦育种研究的最新进展. 贵州师范大学学报(自然科学版), 2018, 36(3): 1–7. Chen Q F. The status of buckwheat production and recent progresses of breeding on new type of cultivated buckwheat. J Guizhou Norm Univ (Nat Sci), 2018, 36(3): 1–7 (in Chinese with English abstract). [2] Zhu F. Chemical composition and health effects of Tartary buckwheat. Food Chem, 2016, 203: 231–245. [3] Sinkovič L, Kokalj Sinkovič D, Meglič V. Milling fractions composition of common (Fagopyrum esculentum Moench) and Tartary (Fagopyrum tataricum (L.) Gaertn.) buckwheat. Food Chem, 2021, 365: 130459. [4] 任长忠, 陈庆富, 李洪有, 魏黎明, 郭来春, 王春龙, 李春花. 苦荞种质资源评价及遗传育种研究展望. 西北植物学报, 2023, 43: 1251–1260. Ren C Z, Chen Q F, Li H Y, Wei L M, Guo L C, Wang C L, Li C H. Tartary buckwheat germplasm evaluation and genetic breeding research perspectives. Acta Bot Boreali-Occident Sin, 2023, 43: 1251–1260 (in Chinese with English abstract). [5] 郭志利, 孙常青. 北方旱地荞麦抗倒栽培技术研究. 杂粮作物, 2007, 27: 364–366. Guo Z L, Sun C Q. Study on lodging-resistant cultivation techniques of buckwheat in northern arid regions. Rain Fed Crops, 2007, 27: 364–366 (in Chinese with English abstract). [6] 叶宇栋. 水稻半矮秆突变体M080的鉴定及其基因克隆. 吉林大学硕士学位论文, 吉林长春, 2024. Ye Y D. Identification and Gene Cloning of the Semi-dwarf Mutant M080 in Rice. MS Thesis of Jilin University, Changchun, Jilin, China, 2024 (in Chinese with English abstract). [7] 刘磊. 玉米矮化突变体gad39的遗传分析与分子鉴定. 河南农业大学硕士学位论文, 河南郑州, 2021. Liu L. Genetic Analysis and Molecular Identification of Maize Dwarf Mutant gad39. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2021 (in Chinese with English abstract). [8] Zhang B, Liu X J, Guo Y J, Jia X, Yang D Z, Zhao Y, Dai L F, Kou S J, Zhang X, Hou D Y. Investigation on agronomic characters of dwarf mutant 778 in Broomcorn millet (Panicum miliaceum L.) and analysis of its sensitivity to GA. Agric Biotechnol, 2020, 9: 7–11. [9] Zhang J, Liu X Q, Li S Y, Cheng Z K, Li C Y. The rice semi-dwarf mutant sd37, caused by a mutation in CYP96B4, plays an important role in the fine-tuning of plant growth. PLoS One, 2014, 9: e88068. [10] 赵秋实, 李倩倩, 王超杰, 蒋宏宝, 耿皆飞, 杨媛, 刘录祥, 张小燕, 谢彦周, 王成社. 普通小麦品种陕农33矮秆突变体的矮化效应分析. 麦类作物学报, 2018, 38: 1053–1064. Zhao Q S, Li Q Q, Wang C J, Jiang H B, Geng J F, Yang Y, Liu L X, Zhang X Y, Xie Y Z, Wang C S. Analysis of the dwarfing mutagenic effect on dwarf mutants of common wheat variety Shaannong 33. J Triticeae Crops, 2018, 38: 1053–1064 (in Chinese with English abstract). [11] 宋秋平, 俞佳虹, 刘佳, 尹玉和, 张强, 王凤梧, 刘乐承, 万红建. 植物矮化基因相关研究进展. 广东农业科学, 2021, 48(8): 19–28. Song Q P, Yu J H, Liu J, Yin Y H, Zhang Q, Wang F W, Liu L C, Wan H J. Research progress of dwarfing genes in plants. Guangdong Agric Sci, 2021, 48(8): 19–28 (in Chinese with English abstract). [12] 刘洁, 李润植. 作物矮化基因与GA信号转导途径. 中国农学通报, 2005, 21(1): 37–40. Liu J, Li R Z. Dwarfing genes and GA signal transduction pathway in crops. Chin Agric Sci Bull, 2005, 21(1): 37–40 (in Chinese with English abstract). [13] Silverstone A L, Sun T. Gibberellins and the green revolution. Trends Plant Sci, 2000, 5: 1–2. [14] Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M S, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9: 11–17. [15] Chen Y, Hou M M, Liu L J, Wu S, Shen Y, Ishiyama K, Kobayashi M, McCarty D R, Tan B C. The maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol. Plant Physiol, 2014, 166: 2028–2039. [16] Bensen R J, Johal G S, Crane V C, Tossberg J T, Schnable P S, Meeley R B, Briggs S P. Cloning and characterization of the maize An1 gene. Plant Cell, 1995, 7: 75–84. [17] Winkler R G, Helentjaris T. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in Gibberellin biosynthesis. Plant Cell, 1995, 7: 1307–1317. [18] Fu J Y, Ren F, Lu X, Mao H J, Xu M M, Degenhardt J, Peters R J, Wang Q. A tandem array of ent-kaurene synthases in maize with roles in gibberellin and more specialized metabolism. Plant Physiol, 2016, 170: 742–751. [19] Woodward A W, Bartel B. Auxin: regulation, action, and interaction. Ann Bot, 2005, 95: 707–735. [20] Feng L, Li G R, He Z B, Han W Y, Sun J X, Huang F L, Di J J, Chen Y S. The ARF GH3 and Aux/IAA gene families in Castor bean (Ricinus communis L.): genome-wide identification and expression profiles in high-stalk and dwarf strains. Ind Crops Prod, 2019, 141: 111804. [21] 赵小珍. 甘蓝型油菜半矮杆突变体df34矮杆基因的精细定位与候选基因分析. 南京农业大学硕士学位论文, 江苏南京, 2022. Zhao X Z. Fine Mapping and Candidate Gene Analysis of df34 Dwarf Gene in Brassica napus Semi-dwarf Mutant. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2022 (in Chinese with English abstract). [22] 罗京. 甘蓝型油菜矮化性状的蛋白质组和转录组联合分析. 贵州师范大学硕士学位论文, 贵州贵阳, 2021. Luo J. Brassica napus L. Dwarf Traits Proteome and Transcriptome Joint Analysis. MS Thesis of Guizhou Normal University, Guiyang, Guizhou, China, 2021 (in Chinese with English abstract). [23] 侯珊珊. 黄瓜极端矮化突变体“super compact-2”基因分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2018. Hou S S. Characteristic Analysis of the ‘super compect-2’ Mutant in Cucumber (Cucumis sativus L.). MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2018 (in Chinese with English abstract). [24] Wakasa Y, Kawakatsu T, Ishimaru K, Ozawa K. Generation of major glutelin-deficient (GluA, GluB, and GluC) semi-dwarf Koshihikari rice line. Plant Cell Rep, 2024, 43: 51. [25] Irshad A, Guo H J, Ur Rehman S, Gu J Y, Ahmed R I, Hussain M, Ammar A, Ali I, Zafar A, Wang C J, et al. Induction of semi-dwarf trait to a three pistil tall mutant through breeding with increased grain numbers in wheat. Front Genet, 2022, 13: 828866. [26] Kaur A, Best N B, Hartwig T, Budka J, Khangura R S, McKenzie S, Aragón-Raygoza A, Strable J, Schulz B, Dilkes B P. A maize semi-dwarf mutant reveals a GRAS transcription factor involved in brassinosteroid signaling. Plant Physiol, 2024, 195: 3072–3096. [27] Guo F D, Hou L, Ma C L, Li G H, Lin R X, Zhao Y X, Wang X J. Comparative transcriptome analysis of the peanut semi-dwarf mutant 1 reveals regulatory mechanism involved in plant height. Gene, 2021, 791: 145722. [28] 韦爽. 不同苦荞品种植株性状与抗倒伏的关系研究. 贵州师范大学硕士学位论文, 贵州贵阳, 2015. Wei S. Study on the Relationship between Lodging Resistance and Plant Characters of Different Tartary Buckwheat. MS Thesis of Guizhou Normal University, Guiyang, Guizhou, China, 2015 (in Chinese with English abstract). [29] 关志秀. 苦荞节间伸长突变体ein1的生长特性与转录组学研究. 贵州师范大学硕士学位论文, 贵州贵阳, 2023. Guan Z X. Characteristics of Plant Growth and Transcriptomic Analysis of Internode Elongation Mutant ein1 in Fagopyrum tataricum. MS Thesis of Guizhou Normal University, Guiyang, Guizhou, China, 2023 (in Chinese with English abstract). [30] Li H Y, Lyu Q Y, Shi T X, Jian Y L, Ran B, Cheng Y Z, Wang L, Zhang J, Huang J, Deng J, et al. The complete reference genome of Tartary buckwheat and its mutation library provide important resources for genetic studies and breeding. Cell Rep, 2025, 44: 115621. [31] 汤子凯. 梨矮化相关基因筛选及PbrGA2ox1的功能研究. 南京农业大学硕士学位论文, 江苏南京, 2021. Tang Z K. Pear Dwarf Related Genes Mining and Functional Study of PbrGA2ox1. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2021 (in Chinese with English abstract). [32] 虞慧芳, 曹家树, 王永勤. 植物矮化突变体的激素调控. 生命科学, 2002, 14(2): 85–88. Yu H F, Cao J S, Wang Y Q. Hormones regulation in plant dwarfing mutants. Chin Bull Life Sci, 2002, 14(2): 85–88 (in Chinese with English abstract). [33] Cui F, Li J, Ding A M, Zhao C H, Wang L, Wang X Q, Li S S, Bao Y G, Li X F, Feng D S, et al. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet, 2011, 122: 1517–1536. [34] 杨睿, 张正, 杨丽莉, 张彦琴, 董春林, 常建忠. 玉米矮杆突变体A5的表型鉴定及转录组分析. 山西大学学报(自然科学版), 2020, 43: 597–603. Yang R, Zhang Z, Yang L L, Zhang Y Q, Dong C L, Chang J Z. Phenotypic characterization and transcriptome analysis of maize dwarf mutant A5. J Shanxi Univ (Nat Sci Edn), 2020, 43: 597–603 (in Chinese with English abstract). [35] 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体Xu1801的鉴定及其矮化效应分析. 作物学报, 2023, 49: 2133–2143. Su Z X, Huang Z Q, Gao R F, Zhu X C, Wang B, Chang Y, Li X S, Ding Z Q, Yi Y. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect. Acta Agron Sin, 2023, 49: 2133–2143 (in Chinese with English abstract). [36] 陶怡然, 熊毓贞, 谢佳, 田维江, 张晓琼, 张孝波, 周倩, 桑贤春, 王晓雯. 水稻矮化大粒突变体sdb1的鉴定与基因定位. 作物学报, 2018, 44: 1621–1630. Tao Y R, Xiong Y Z, Xie J, Tian W J, Zhang X Q, Zhang X B, Zhou Q, Sang X C, Wang X W. Identification and gene mapping of sdb1 mutant with a semi-dwarfism and bigger seed in rice. Acta Agron Sin, 2018, 44: 1621–1630 (in Chinese with English abstract). [37] Sun Z X, Wang X F, Liu R H, Du W, Ma M C, Han Y H, Li H Y, Liu L L, Hou S Y. Comparative transcriptomic analysis reveals the regulatory mechanism of the gibberellic acid pathway of Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) dwarf mutants. BMC Plant Biol, 2021, 21: 206. [38] 汪灿. 荞麦茎秆特性与倒伏的关系及调控研究. 西南大学硕士学位论文, 重庆, 2015. Wang C. Relationship between Culm Characteristics and Lodging and Its Regulation Study in Buckwheat. MS Thesis of Southwest University, Chongqing, China, 2015 (in Chinese with English abstract). [39] 高翔, 郝志萍, 吕慧卿, 刘璋, 周忠宇, 贺文文, 阎昊, 王官. 荞麦抗倒性研究进展. 中国农学通报, 2019, 35(13): 6–11. Gao X, Hao Z P, Lyu H Q, Liu Z, Zhou Z Y, He W W, Yan H, Wang G. Research progress on lodging resistance of buckwheat. Chin Agric Sci Bull, 2019, 35(13): 6–11 (in Chinese with English abstract). [40] Liu C, Zheng S, Gui J S, Fu C J, Yu H S, Song D L, Shen J H, Qin P, Liu X M, Han B, et al. Shortened basal internodes encodes a gibberellin 2-oxidase and contributes to lodging resistance in rice. Mol Plant, 2018, 11: 288–299. [41] Shimizu A, Yamaguchi H, Degi K, Morishita T. Development of ‘Darumadattan’, a semidwarf lodging-resistant Tartary buckwheat cultivar, using gamma-ray irradiation. Breed Sci, 2020, 70: 623–630. [42] 张超, 孙君灵, 贾银华, 周忠丽, 潘兆娥, 何守朴, 徐正君, 杜雄明. 外源激素对一个新的棉花极端矮化突变体AS98植株生长和酶活性的影响. 中国农业科学, 2010, 43: 1370–1378. Zhang C, Sun J L, Jia Y H, Zhou Z L, Pan Z E, He S P, Xu Z J, Du X M. Effects of exogenous hormones on plant growth and enzyme activity of a new cotton extremely dwarf mutant AS98. Sci Agric Sin, 2010, 43: 1370–1378 (in Chinese with English abstract). [43] 叶梅荣, 朱昌华, 甘立军, 夏凯. 激素间相互作用对植物茎伸长生长的调控综述. 中国农学通报, 2007, 23(4): 228–231. Ye M R, Zhu C H, Gan L J, Xia K. Hormonal interactions in the control of plant stem elongation. Chin Agric Sci Bull, 2007, 23(4): 228–231 (in Chinese with English abstract). [44] 王武全, 曹本高, 员海燕. 玉米矮秆突变体的激素敏感性分析. 西北农林科技大学学报(自然科学版), 2017, 45(8): 51–55. Wang W Q, Cao B G, Yun H Y. Hormone sensitivity of a dwarf mutant of maize. J Northwest A&F Univ (Nat Sci Edn), 2017, 45(8): 51–55 (in Chinese with English abstract). [45] 屈淑平, 丁文琪, 王云莉, 徐文龙, 任晓婧. 外源激素处理对美洲南瓜植株生长的影响. 东北农业大学学报, 2020, 51(1): 23–32. Qu S P, Ding W Q, Wang Y L, Xu W L, Ren X J. Effect of exogenous hormone treatment on the growth of pumpkin (Cucurbita pepo L.). J Northeast Agric Univ, 2020, 51(1): 23–32 (in Chinese with English abstract). [46] Han L L, Jiang C G, Zhang W, Wang H W, Li K, Liu X G, Liu Z F, Wu Y J, Huang C L, Hu X J. Morphological characterization and transcriptome analysis of new dwarf and narrow-leaf (dnl2) mutant in maize. Int J Mol Sci, 2022, 23: 795. [47] 黄志刚, 李玲, 陈兆平, 文方德. SPINDLY与赤霉素的信号转导. 植物学通报, 2005, 40(1): 100–106. Huang Z G, Li L, Chen Z P, Wen F D. SPINDLY and gibberellin signaling. Chin Bull Bot, 2005, 40(1): 100–106 (in Chinese with English abstract). [48] 张珏锋, 李芳, 钟海英, 陈建明. 茭白‘浙农7号’不同生长阶段的叶片转录组学及激素水平分析. 农业生物技术学报, 2024, 32: 299–310. Zhang J F, Li F, Zhong H Y, Chen J M. Analysis of transcriptomics and hormone levels of Jiaobai ‘Zhenong 7’ in different growth stages. J Agric Biotechnol, 2024, 32: 299–310 (in Chinese with English abstract). [49] Feng S H, Martinez C, Gusmaroli G, Wang Y, Zhou J L, Wang F, Chen L Y, Yu L, Iglesias-Pedraz J M, Kircher S, et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 2008, 451: 475–479. [50] 白羿雄, 赵小红, 姚晓华, 李新, 吴昆仑. 作物抗倒伏相关性状及其信号转导调控机理的研究进展. 植物科学学报, 2021, 39: 102–109. Bai Y X, Zhao X H, Yao X H, Li X, Wu K L. Research progress on crop lodging resistance-related traits and mechanism of signal transduction. Plant Sci J, 2021, 39: 102–109 (in Chinese with English abstract). [51] de Lucas M, Davière J M, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz J M, Lorrain S, Fankhauser C, Blázquez M A, Titarenko E, Prat S. A molecular framework for light and gibberellin control of cell elongation. Nature, 2008, 451: 480–484. [52] Nakamura Y, Kato T, Yamashino T, Murakami M, Mizuno T. Characterization of a set of phytochrome-interacting factor-like bHLH proteins in Oryza sativa. Biosci Biotechnol Biochem, 2007, 71: 1183–1191. [53] 胡新喜. 柑橘转基因研究及转phyB基因枳橙的综合鉴定. 湖南农业大学博士学位论文, 湖南长沙, 2007. Hu X X. Transformation of Citrus and Identification of Ttransgenic Citrange with phyB Gene. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2007 (in Chinese with English abstract) |
[1] | 吉白璐, 孙艺文, 刘万峰, 钱亚新, 蒋彩虹, 耿锐梅, 刘旦, 程立锐, 杨爱国, 黄立钰, 李晓旭, 蒲文宣, 高军平, 张强, 文柳璎. 烟草脂类合成关键基因NtLPAT的功能验证[J]. 作物学报, 2025, 51(9): 2527-2537. |
[2] | 贺红利, 张雨涵, 杨静, 程云清, 赵杨, 李星诺, 司洪亮, 张兴政, 杨向东. 大豆e1-as基因突变体的创制及生理分析[J]. 作物学报, 2025, 51(8): 2228-2239. |
[3] | 杨晓慧, 晏宣军, 杨文妍, 付俊杰, 杨琴, 谢玉心. 玉米ZmKL1优异等位基因调控籽粒大小的效应评估及分子机制解析[J]. 作物学报, 2025, 51(6): 1501-1513. |
[4] | 王青, 王伊秀, 李越男, 吕永辉, 张海波, 刘娜, 程红艳. 高、低Cd积累小麦对Cd胁迫的转录组学响应差异[J]. 作物学报, 2025, 51(5): 1230-1247. |
[5] | 王晓琳, 刘忠松, 康雷, 杨柳. 甘蓝型油菜角果长度和每角粒数基因定位以及角果皮转录组动态分析[J]. 作物学报, 2025, 51(4): 888-899. |
[6] | 孙程明, 周晓婴, 陈锋, 张维, 王晓东, 彭琦, 郭月, 高建芹, 胡茂龙, 付三雄, 张洁夫. 长链非编码RNA (lncRNA)在甘蓝型油菜分枝角度调控中的功能分析与预测[J]. 作物学报, 2025, 51(3): 559-567. |
[7] | 张金泽, 周庆国, 杨旭, 王倩, 肖莉晶, 金海润, 欧阳青静, 余坤江, 田恩堂. 芥菜型油菜响应菌核病侵染表达特性与高抗性关联基因分析[J]. 作物学报, 2025, 51(3): 621-631. |
[8] | 王晨, 贺丹, 姚敏, 邱萍, 何昕, 熊兴华, 康雷, 刘忠松, 钱论文. 基于转录组分析鉴定甘蓝型油菜开花候选基因以及BnaCOR27功能验证[J]. 作物学报, 2025, 51(10): 2693-2704. |
[9] | 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296. |
[10] | 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206. |
[11] | 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906. |
[12] | 肖明昆, 严炜, 宋记明, 张林辉, 刘倩, 段春芳, 李月仙, 姜太玲, 沈绍斌, 周迎春, 沈正松, 熊贤坤, 罗鑫, 白丽娜, 刘光华. 卷叶木薯及其突变体叶片的比较转录组分析[J]. 作物学报, 2024, 50(8): 2143-2156. |
[13] | 赵娜, 刘宇曦, 张朝澍, 石瑛. 不同马铃薯淀粉含量差异的转录组学解析[J]. 作物学报, 2024, 50(6): 1503-1513. |
[14] | 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146. |
[15] | 宋梦媛, 郭中校, 苏禹霏, 邓昆鹏, 兰天娇, 程钰鑫, 包淑英, 王桂芳, 窦金光, 姜泽锴, 王明海, 徐宁. 一种绿豆柱头外露突变体的转录组分析[J]. 作物学报, 2024, 50(4): 957-968. |
|