欢迎访问作物学报,今天是

作物学报

• •    

灌溉方式和种植密度优化协同提高夏玉米产量和水分利用效率

崔栋1,王同超1,杨松林1,任佰朝1,高英波2,于宁宁1,*,张吉旺1,*   

  1. 1 山东农业大学农学院,山东泰安 271018; 2 山东省农业科学院, 山东济南 250100
  • 收稿日期:2025-04-23 修回日期:2025-08-13 接受日期:2025-08-13 网络出版日期:2025-08-15
  • 基金资助:
    本研究由山东省重点研发计划项目(2024CXGC010901-3), 国家自然科学基金项目(32172115)和财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-02-21)资助。

Optimization of irrigation methods and planting density synergistically increases yield and water use efficiency in summer maize

CUI Dong1,WANG Tong-Chao1,YANG Song-Lin1,REN Bai-Zhao1,GAO Ying-Bo2,YU Ning-Ning1,*,ZHANG Ji-Wang1,*   

  1. 1 Agronomy College of Shandong Agricultural University, Tai’an 271018, Shandong, China; 2 Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
  • Received:2025-04-23 Revised:2025-08-13 Accepted:2025-08-13 Published online:2025-08-15
  • Supported by:
    This study was supported by the Key Research and Development Program of Shandong Province (2024CXGC010901-3), the National Natural Science Foundation of China (32172115), and the China Agriculture Research System of MOF and MARA (CARS-02-21).

摘要: 针对黄淮海地区夏玉米生产面临的水资源短缺与高产需求矛盾,本研究旨在探究灌溉方式与种植密度对产量及水分利用效率(WUE)的调控机制。试验于2023—2024年在山东省泰安市进行,设置常规畦灌方式(BI)和滴灌方式(DI) 2种灌溉方式和8个种植密度(D1:15,000株 hm?2;D2:30,000株 hm?2;D3:45,000株 hm?2;D4:60,000株 hm?2;D5:75,000株 hm?2;D6:90,000株 hm?2;D7:105,000株 hm?2;D8:120,000株 hm?2),采用裂区试验设计,系统研究滴灌条件下种植密度对夏玉米产量形成和水分利用效率的影响。主要研究结果表明:(1) DI处理通过优化水肥时空供应,使玉米群体的产量和WUE明显提升,分别较BI处理提升7.5%和15.3%;(2)作物蒸散量(ETc)、土壤蒸发量(E)和作物蒸腾量(Tr)与种植密度均呈非线性函数关系,密度增加显著降低土壤蒸发量占蒸散量的比例(E/ETc);(3)随着种植密度的增加,产量和WUE呈抛物线曲线变化,DI处理通过局部湿润减少水分无效蒸发,缓解了高密度下的水分竞争,而BI处理因全田湿润易增加土壤水分蒸发,造成水资源的无效损失,其最高产量所对应的种植密度(82,700株 hm?2)显著低于DI处理(93,300株 hm?2)。可见,在滴灌方式下采用90,000株 hm?2的种植密度,可实现夏玉米产量与WUE同步提升,所以本研究建议在黄淮海地区种植夏玉米时,采用滴灌方式与种植密度90,000株 hm?2的组合模式。

关键词: 滴灌, 种植密度, 蒸散分配, 产量, 水分利用效率

Abstract:

To address the conflict between water scarcity and the demand for high yields in summer maize production in the Huang-huai-hai region, this study investigated the regulatory effects of irrigation methods and planting density on yield and water use efficiency (WUE). A field experiment was conducted during 2023–2024 in Tai’an City, Shandong Province, using two irrigation methods—conventional border irrigation (BI) and drip irrigation (DI)—and eight planting densities (D1: 15,000; D2: 30,000; D3: 45,000; D4: 60,000; D5: 75,000; D6: 90,000; D7: 105,000; D8: 120,000 plants hm?2). A split-plot design was employed to systematically examine the effects of planting density on yield formation and WUE under drip irrigation. The main findings were as follows: (1) DI significantly outperformed BI, increasing grain yield and WUE by 7.5% and 15.3%, respectively, due to optimized spatiotemporal water and nutrient supply; (2) Evapotranspiration (ETc), soil evaporation (E), and crop transpiration (Tr) were all nonlinear functions of planting density, with increasing density significantly reducing the proportion of E in ETc (E/ETc); (3) Both yield and WUE exhibited parabolic responses to planting density. DI reduced ineffective water loss through localized wetting and mitigated water competition under high-density conditions. In contrast, the optimal planting density under BI (82,700 plants hm?2) was significantly lower than that under DI (93,300 plants hm?2), as full-field wetting in BI increased soil evaporation and led to greater water loss. Overall, a planting density of 90,000 plants hm-2 under drip irrigation was found to simultaneously enhance summer maize yield and WUE. Therefore, this study recommends adopting drip irrigation combined with a planting density of 90,000 plants hm?2 for summer maize cultivation in the Huang-huai-hai region.

Key words: drip irrigation, planting density, evapotranspiration partitioning, yield, water use efficiency

[1] 联合国粮食及农业组织. 生产量统计: 作物和牲畜产品. [2025-06-11], https://www.fao.org/faostat/zh/#data/QCL.
Food and Agriculture Organization of the United Nations. Production statistics: crop and livestock products. [2025-06-11], https://www.fao.org/faostat/zh/#data/QCL.

[2] Tilman D, Balzer C, Hill J, Befort B L. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 2011, 108: 20260–20264.

[3] Hou X H, Fan J L, Zhang F C, Hu W H, Xiang Y Z. Optimization of water and nitrogen management to improve seed cotton yield, water productivity and economic benefit of mulched drip-irrigated cotton in southern Xinjiang, China. Field Crops Res, 2024, 308: 109301.

[4] Darouich H, Gonçalves J M, Muga A, Pereira L S. Water saving vs. farm economics in cotton surface irrigation: an application of multicriteria analysis. Agric Water Manag, 2012, 115: 223–231.

[5] Ayars J E, Fulton A, Taylor B. Subsurface drip irrigation in California: here to stay? Agric Water Manag, 2015, 157: 39–47.

[6] Guo J J, Fan J L, Xiang Y Z, Zhang F C, Yan S C, Zhang X Y, Zheng J, Li Y P, Tang Z J, Li Z J. Coupling effects of irrigation amount and nitrogen fertilizer type on grain yield, water productivity and nitrogen use efficiency of drip-irrigated maize. Agric Water Manag, 2022, 261: 107389.

[7] Wang F, Meng H F, Xie R Z, Wang K R, Ming B, Hou P, Xue J, Li S K. Optimizing deficit irrigation and regulated deficit irrigation methods increases water productivity in maize. Agric Water Manag, 2023, 280: 108205.

[8] Li H R, Mei X R, Wang J D, Huang F, Hao W P, Li B G. Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: a meta-analysis in China. Agric Water Manag, 2021, 244: 106534.

[9] Guo H, Li S E, Kang S Z, Du T S, Liu W F, Tong L, Hao X M, Ding R S. The controlling factors of ecosystem water use efficiency in maize fields under drip and border irrigation systems in Northwest China. Agric Water Manag, 2022, 272: 107839.

[10] Hou P, Liu Y E, Liu W M, Liu G Z, Xie R Z, Wang K R, Ming B, Wang Y H, Zhao R L, Zhang W J, et al. How to increase maize production without extra nitrogen input. Resour Conserv Recycl, 2020, 160: 104913.

[11] Shao H, Wu X B, Chi H H, Zhu F B, Liu J H, Duan J H, Shi W J, Xu Y, Mi G H. How does increasing planting density affect nitrogen use efficiency of maize: a global meta-analysis. Field Crops Res, 2024, 311: 109369.

[12] Saenz E, Ruiz A, Sciarresi C, King K, Baum M, Ferela A, Danalatos G J N, Gambin B, Kalogeropoulos G, Thies A, et al. Historical increases in plant density increased vegetative maize biomass while breeding increased reproductive biomass and allocation to ear over stem. Field Crops Res, 2025, 322: 109704.

[13] Luo N, Meng Q F, Feng P Y, Qu Z R, Yu Y H, Liu D L, Müller C, Wang P. China can be self-sufficient in maize production by 2030 with optimal crop management. Nat Commun, 2023, 14: 2637.

[14] Zhang G X, Cui C G, Lyu Y F, Wang X Y, Wang X F, Zhao D H, Hu F S, Wen X X, Han J, Liao Y C. Is it necessary to increase the maize planting density in China? Eur J Agron, 2024, 159: 127235.

[15] Fang X M, Li Y S, Nie J, Wang C, Huang K H, Zhang Y K, Zhang Y L, She H Z, Liu X B, Ruan R W, et al. Effects of nitrogen fertilizer and planting density on the leaf photosynthetic characteristics, agronomic traits and grain yield in common buckwheat (Fagopyrum esculentum M.). Field Crops Res, 2018, 219: 160–168.

[16] Tolimir M, Gajić B, Kresović B, Životić L, Gajić K, Brankov M, Todorovic M. Impact of deficit irrigation and planting density on grain yield and water productivity of maize grown under temperate continental climatic conditions. Agric Water Manag, 2024, 302: 109009.

[17] Zhai M H, Wei X W, Pan Z L, Xu Q Q, Qin D L, Li J H, Zhang J, Wang L Z, Wang K F, Duan X Y, et al. Optimizing plant density and canopy structure to improve light use efficiency and cotton productivity: Two years of field evidence from two locations. Ind Crops Prod, 2024, 222: 119946.

[18] 吴希, 王家瑞, 郝淼艺, 张宏军, 张仁和. 种植密度对不同生育期玉米品种光温资源利用率和产量的影响. 作物学报, 2023, 49: 1065–1078.
Wu X, Wang J R, Hao M Y, Zhang H J, Zhang H. Effects of planting density on light and temperature resource utilization and yield of maize varieties at different fertility stages. Acta Agron Sin, 2023, 49: 1065–1078 (in Chinese with English abstract).

[19] Grassini P, Thorburn J, Burr C, Cassman K G. High-yield irrigated maize in the Western U.S. Corn Belt: I. On-farm yield, yield potential, and impact of agronomic practices. Field Crops Res, 2011, 120: 142–150.

[20] Liu Y E, Hou P, Huang G R, Zhong X L, Li H R, Zhao J R, Li S K, Mei X R. Maize grain yield and water use efficiency in relation to climatic factors and plant population in northern China. J Integr Agric, 2021, 20: 3156–3169.

[21] Fan J C, Lu X J, Gu S H, Guo X Y. Improving nutrient and water use efficiencies using water-drip irrigation and fertilization technology in Northeast China. Agric Water Manag, 2020, 241: 106352.

[22] Zhang G, Shen D, Ming B, Xie R, Hou P, Xue J, Wang K, Li S. Optimizing planting density to increase maize yield and water use efficiency and economic return in the arid region of northwest China. Agriculture, 2022, 12: 1322.

[23] García-Mollá M, Medina R P, Vega-Carrero V, Sanchis-Ibor C. Economic efficiency of drip and flood irrigation: comparative analysis at farm scale using DEA. Agric Water Manag, 2025, 309: 109314.

[24] Meng X P, Lian Y H, Liu Q, Zhang P, Jia Z K, Han Q F. Optimizing the planting density under the ridge and furrow rainwater harvesting system to improve crop water productivity for foxtail millet in semiarid areas. Agric Water Manag, 2020, 238: 106220.

[25] Guo Q, Huang G M, Guo Y L, Zhang M C, Zhou Y Y, Duan L S. Optimizing irrigation and planting density of spring maize under mulch drip irrigation system in the arid region of Northwest China. Field Crops Res, 2021, 266: 108141.

[26] Ertek A, Şensoy S, Gedik İ, Küçükyumuk C. Irrigation scheduling based on pan evaporation values for cucumber (Cucumis sativus L.) grown under field conditions. Agric Water Manag, 2006, 81: 159–172.

[27] Wei Z, Paredes P, Liu Y, Chi W W, Pereira L S. Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain. Agric Water Manag, 2015, 147: 43–53.

[28] 王亮, 林涛, 严昌荣, 王静, 郭瑞霞, 岳璐珂, 汤秋香. 地膜残留量对新疆棉田蒸散及棵间蒸发的影响. 农业工程学报, 2016, 32(14): 120–128.
Wang L, Lin T, Yan C R, Wang J, Guo R X, Yue L K, Tang Q X. Effects of plastic film residue on evapotranspiration and soil evaporation in cotton field of Xinjiang. Trans CSAE, 2016, 32(14): 120–128 (in Chinese with English abstract).

[29] Xu W J, Liu C W, Wang K R, Xie R Z, Ming B, Wang Y H, Zhang G Q, Liu G Z, Zhao R L, Fan P P, et al. Adjusting maize plant density to different climatic conditions across a large longitudinal distance in China. Field Crops Res, 2017, 212: 126–134.

[30] Lan T Q, Du L J, Wang X L, Zhan X X, Liu Q L, Wei G, Lyu C C, Liu F, Gao J X, Feng D J, et al. Synergistic effects of planting density and nitrogen fertilization on chlorophyll degradation and leaf senescence after silking in maize. Crop J, 2024, 12: 605–613.

[31] Jia Q M, Sun L F, Wang J J, Li J, Ali S, Liu T N, Zhang P, Lian Y H, Ding R X, Ren X L, et al. Limited irrigation and planting densities for enhanced water productivity and economic returns under the ridge-furrow system in semi-arid regions of China. Field Crops Res, 2018, 221: 207–218.

[32] Fang L, Zhang G Q, Ming B, Shen D P, Wang Z, Zhou L L, Zhang T T, Liang Z Y, Xue J, Xie R Z, et al. Dense planting and nitrogen fertilizer management improve drip-irrigated spring maize yield and nitrogen use efficiency in Northeast China. J Integr Agric, 2024.

[33] Hao B Z, Ma J L, Si S H, Wang X J, Wang S L, Li F M, Jiang L N. Response of grain yield and water productivity to plant density in drought-tolerant maize cultivar under irrigated and rainfed conditions. Agric Water Manag, 2024, 298: 108880.

[34] Wu X R, Li Z M, Li W J, Xue X K, Yang L C, Xu J, Yang B P, Ding R X, Jia Z K, Zhang X D, et al. Reducing fertilization with high planting density increases maize yield stability and nitrogen use efficiency in semi-arid areas. Eur J Agron, 2024, 159: 127223.

[35] Liu J L, Bu L D, Zhu L, Luo S S, Chen X P, Li S Q. Optimizing plant density and plastic film mulch to increase maize productivity and water-use efficiency in semiarid areas. Agron J, 2014, 106: 1138–1146.

[36] Wang F, Xiao J F, Ming B, Xie R Z, Wang K R, Hou P, Liu G Z, Zhang G Q, Chen J L, Liu W M, et al. Grain yields and evapotranspiration dynamics of drip-irrigated maize under high plant density across arid to semi-humid climates. Agric Water Manag, 2021, 247: 106726.

[37] Yang D N, Li S E, Kang S Z, Du T S, Guo P, Mao X M, Tong L, Hao X M, Ding R S, Niu J. Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China. Agric Water Manag, 2020, 232: 106001.

[38] Wen S L, Cui N B, Wang Y S, Gong D Z, Xing L W, Wu Z J, Zhang Y X, Zhao L, Fan J L, Wang Z H. Optimizing deficit drip irrigation to improve yield, quality, and water productivity of apple in Loess Plateau of China. Agric Water Manag, 2024, 296: 108798.

[39] Zhang Y H, Wang R, Wang S L, Ning F, Wang H, Wen P F, Li A, Dong Z Y, Xu Z G, Zhang Y J, et al. Effect of planting density on deep soil water and maize yield on the Loess Plateau of China. Agric Water Manag, 2019, 223: 105655.

[40] Zou H Y, Fan J L, Zhang F C, Xiang Y Z, Wu L F, Yan S C. Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China. Agric Water Manag, 2020, 230: 105986.

[41] Zhang G Q, Liu C W, Xiao C H, Xie R Z, Ming B, Hou P, Liu G Z, Xu W J, Shen D P, Wang K R, et al. Optimizing water use efficiency and economic return of super high yield spring maize under drip irrigation and plastic mulching in arid areas of China. Field Crops Res, 2017, 211: 137–146.

[1] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[2] 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163.
[3] 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138.
[4] 樊友众, 王先领, 王宗铠, 王春云, 王天尧, 谢捷, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 周广生. 秸秆还田耦合氮肥运筹对稻茬油菜光合性能及产量的影响[J]. 作物学报, 2025, 51(8): 2139-2151.
[5] 武斌, 曹永刚, 胡发龙, 殷文, 樊志龙, 范虹, 柴强. 免耕轮作对减氮小麦产量下降的补偿效果[J]. 作物学报, 2025, 51(7): 1959-1968.
[6] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[7] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[8] 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933.
[9] 李炳霖, 叶晓磊, 肖红, 肖国滨, 吕伟生, 刘君权, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜产量和镁吸收量及因冻害减产程度的影响[J]. 作物学报, 2025, 51(7): 1850-1860.
[10] 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900.
[11] 董伟进, 张亚封, 李启云, 路杨, 张正坤, 隋丽. CO2浓度升高条件下球孢白僵菌定殖对玉米生长及产量的影响[J]. 作物学报, 2025, 51(7): 1874-1886.
[12] 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913.
[13] 李子翔, 黄绒, 王志超, 李鸿雁, 谭俊行, 程宇, 杜雪竹, 盛锋. 聚-γ-谷氨酸对直播稻抗倒伏性的影响[J]. 作物学报, 2025, 51(6): 1654-1664.
[14] 崔鑫, 谷贺贺, 宋毅, 张哲, 刘诗诗, 陆志峰, 任涛, 鲁剑巍. 钾肥用量对油菜产量和钾素积累及因冻害减产程度的影响[J]. 作物学报, 2025, 51(6): 1629-1642.
[15] 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!