欢迎访问作物学报,今天是

作物学报

• •    

氮肥用量对油菜籽粒内生微生物及籽粒品质的影响

庄玥茗,宋毅,陈航航,陆志峰,廖世鹏,李小坤,丛日环,任涛*,鲁剑巍   

  1. 华中农业大学资源与环境学院 / 农业农村部长江中下游耕地保育重点实验室 / 华中农业大学微量元素研究中心, 湖北武汉 430070
  • 收稿日期:2025-05-19 修回日期:2025-09-10 接受日期:2025-09-10 网络出版日期:2025-09-25
  • 通讯作者: 任涛, E-mail: rentao@mail.hzau.edu.cn
  • 基金资助:
    本研究由国家自然科学基金项目(32472839), 财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-12), 湖北省油菜产业技术体系(2023HBSTX4-03)和中央高校基本科研业务费专项基金项目(2662021ZH001)资助。

Effects of application of nitrogen on endophytic microbiota and seed quality in rapeseed seeds (Brassica napus L.) 

ZHUANG Yue-Ming,SONG Yi,CHEN Hang-Hang,LU Zhi-Feng,LIAO Shi-Peng,LI Xiao-Kun,CONG Ri-Huan,REN Tao*,LU Jian-Wei   

  1. College of Resources and Environment, Huazhong Agricultural University / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs / Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2025-05-19 Revised:2025-09-10 Accepted:2025-09-10 Published online:2025-09-25
  • Contact: 任涛, E-mail: rentao@mail.hzau.edu.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (32472839), the China Agriculture Research System of MOF and MARA (CARS-12), the Hubei Province Agriculture Research System (2023HBSTX4-03), and the Fundamental Research Funds for the Central Universities (2662021ZH001).

摘要:

为探究不同氮肥施用对油菜籽粒内生微生物和籽粒品质的影响,利用油菜氮肥用量的田间定位试验,选取0180360 kg N hm?2 3个氮肥用量,分别定义为N0 (氮缺乏)N180 (氮适中)N360 (氮过量)。利用16S rRNAITS高通量测序技术测定收获期油菜籽粒内生微生物群落组成,同时测定油菜品质指标,建立不同氮肥施用量下油菜籽粒内生微生物与籽粒品质性状之间的联系。结果表明,氮肥用量显著影响了细菌多样性,真菌多样性响应不显著;不同处理下细菌和真菌群落组成的差异主要体现在物种属水平相对丰度的变化;施氮显著降低细菌和真菌网络复杂性。不同氮肥施用油菜籽粒品质存在显著差异,施氮显著降低籽粒含油率,与N0相比,N180N360处理下籽粒含油率分别下降5.2%10.7%Mental Test结果表明油菜籽粒细菌群落组成与千粒重间呈极显著相关,真菌群落结构与籽粒含油率和C/N间存在极显著关系。随机森林分析表明籽粒内生微生物中Corynebacterium属、Propionibacterium属、Naganishia属、Rhodotorula属、Sebacina属成员可较好预测籽粒油含量。综上所述,氮肥施用能显著调控油菜籽粒内生微生物群落和籽粒品质,籽粒内生微生物与籽粒品质密切相关,这项研究拓展了我们对养分管理策略调节植物相关微生物组的结构和功能的认识,为未来利用植物-微生物组相互作用来改善作物品质提供科学依据。

关键词: 氮肥, 油菜, 籽粒微生物, 油脂, 蛋白质

Abstract:

To explore the effects of nitrogen fertilization on endophytic microorganisms and seed quality in rapeseed (Brassica napus L.), a long-term field experiment was conducted using three nitrogen application rates: 0 (N-deficient, N0), 180 (N-optimal, N180), and 360 kg hm?2 (N-excessive, N360). Endophytic microbial communities in mature seeds were analyzed via high-throughput sequencing of 16S rRNA and ITS regions, and seed quality parameters were measured to assess the relationships between microbial communities and seed traits under different nitrogen regimes. Nitrogen fertilization significantly reduced bacterial diversity but had no notable effect on fungal diversity. Changes in the composition of bacterial and fungal communities were mainly reflected in shifts in the relative abundance of genera. Nitrogen application also markedly decreased the complexity of both bacterial and fungal co-occurrence networks. Seed quality varied significantly among treatments. Oil concentration decreased with increasing nitrogen input—declining by 5.2% and 10.7% under N180 and N360, respectively, compared to N0. Mantel tests revealed a strong correlation between bacterial community composition and 1000-seed weight, while fungal community structure was significantly associated with oil concentration and the C/N ratio. Random Forest analysis identified several key microbial predictors of oil concentration, including the genera Corynebacterium, PropionibacteriumNaganishia, Rhodotorula, and Sebacina. In conclusion, nitrogen fertilization plays a critical role in shaping endophytic microbial communities and regulating seed quality in rapeseed. The close associations between endophytic microbiota and seed traits underscore the potential for harnessing plant–microbiome interactions to improve crop quality. This study enhances our understanding of how nutrient management influences plant-associated microbiomes and provides a scientific basis for optimizing agricultural practices through microbial engineerin

Key words: nitrogen fertilizer, rapeseed (Brassica napus L.), seed-endophytic microbiota, oil, protein

[1] Compant S, Cassan F, Kostić T, Johnson L, Brader G, Trognitz F, Sessitsch A. Harnessing the plant microbiome for sustainable crop production. Nat Rev Microbiol, 2025, 23: 9–23.

[2] Ge A H, Wang E T. Exploring the plant microbiome: a pathway to climate-smart crops. Cell, 2025, 188: 1469–1485.

[3] Gao Y, Zhang Y J, Wang P C, Zhao L L. Structure and diversity of endophytic bacteria in maize seeds and germinating roots. Microorganisms, 2024, 12: 1348.

[4] Simonin M, Briand M, Chesneau G, Rochefort A, Marais C, Sarniguet A, Barret M. Seed microbiota revealed by a large-scale meta-analysis including 50 plant species. New Phytol, 2022, 234: 1448–1463.

[5] Sun Z K, Adeleke B S, Shi Y N, Li C W. The seed microbiomes of staple food crops. Microb Biotechnol, 2023, 16: 2236–2249.

[6] 王星, 何山文, 侯嘉玮, 魏海雷, 张晓霞. 植物种子内生细菌组的研究进展. 微生物学报, 2023, 63: 13651378.
Wang X, He S W, Hou J W, Wei H L, Zhang X X. Advances in seed endophytic bacteriome. Acta Microbiol Sin, 2023, 63: 1365–1378 (in Chinese with English abstract).

[7] 李善家, 雷雨昕, 孙梦格, 刘海锋, 王兴敏. 种子内生细菌多样性与植物互馈作用研究进展. 生物技术通报, 2023, 39(4): 166–175. 
Li S J, Lei Y X, Sun M G, Liu H F, Wang X M. Research progress on the diversity of seed endophytic bacteria and their interaction with plants. Biotechnol Bull, 2023, 39(4): 166–175 (in Chinese with English abstract).

[8] Jiang M, Wang Z S, Li X N, Liu S Q, Song F B, Liu F L. Relationship between endophytic microbial diversity and grain quality in wheat exposed to multi-generational CO2 elevation. Sci Total Environ, 2021, 776: 146029.

[9] de Bang T C, Husted S, Laursen K H, Persson D P, Schjoerring J K. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol, 2021, 229: 2446–2469.

[10] Chen S M, Waghmode T R, Sun R B, Kuramae E E, Hu C S, Liu B B. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome, 2019, 7: 136.

[11] Carrara J E, Raczka N C, Brzostek E R. Long-term nitrogen fertilization impacts plant-microbial interactions differently in arbuscular and ectomycorrhizal trees. Biogeochemistry, 2023, 166: 109–122.

[12] Liu W, Wang Y S, Ji T, Wang C Q, Shi Q H, Li C Y, Wei J W, Gong B. High-nitrogen-induced γ-aminobutyric acid triggers host immunity and pathogen oxidative stress tolerance in tomato and Ralstonia solanacearum interaction. New Phytol, 2024, 244: 1537–1551.

[13] 马丽丽. 氮磷钾镁硼肥施用量对油菜籽产量与品质的影响. 华中农业大学硕士学位论文, 湖北武汉, 2022.
Ma L L. Effect of Nitrogen, Phosphorus, Potassium, Magnesium and Boron Fertilizer Application Rate on Rapeseed Yield and Quality. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2022 (in Chinese with English abstract).

[14] 黄季焜, 胡瑞法. 中国种子产业: 成就、挑战和发展思路. 华南农业大学学报(社会科学版), 2023, 22(1): 1–8.

Huang J K, Hu R F. Achievements, challenges and development ideas of China’s seed industry. J South China Agric Univ (Soc Sci Edn), 2023, 22(1): 1–8 (in Chinese with English abstract).

[15] 鲁剑巍, 任涛, 丛日环, 李小坤, 张洋洋. 我国油菜施肥状况及施肥技术研究展望. 中国油料作物学报, 2018, 40: 712–720.

Lu J W, Ren T, Cong R H, Li X K, Zhang Y Y. Prospects for the research on fertilization status and fertilization techniques of rapeseed in China. Chin J Oil Crop Sci, 2023, 40: 712–720 (in Chinese with English abstract).

[16] 宋毅, 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮肥用量对冬油菜籽粒产量和品质的影响. 作物学报, 2023, 49: 20022011.
Song Y, Li J, Gu H H, Lu Z F, Liao S P, Li X K, Cong R H, Ren T, Lu J W. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.). Acta Agron Sin, 2023, 49: 2002–2011 (in Chinese with English abstract).

[17] 王成. 氮肥水平对冬油菜产量和品质协同调控机制研究. 西北农林科技大学士学位论文, 陕西杨凌, 2022. 

Wang C. Research on the Coordinated Regulation Mechanism of Nitrogen Fertilizer Level on Winter Rapeseed Yield and Quality. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2022 (in Chinese with English abstract).

[18] Li Y M, Liu Y, Zhang H, Yang Y, Wei G H, Li Z F. The composition of root-associated bacteria and fungi of Astragalus mongholicus and their relationship with the bioactive ingredients. Front Microbiol, 2021, 12: 642730.

[19] 李培武, 谢立华, 李光明, 张文, 杨湄, 陈洪. 双低油菜质量标准及其检测技术. 中国食物与营养, 2003, 9(6): 21–24.

Li P W, Xie L H, Li G M, Zhang W, Yang M, Chen H. Double low oilseed rape quality standard and its testing technology. Food Nutr China, 2003, 9(6): 21–24 (in Chinese with English abstract). 

[20] 申长卫. 施钾影响梨叶片和果实糖合成及分配的生理与分子机制. 南京农业大学博士学位论文, 江苏南京, 2017.

Shen C W. Physiological and Molecular Mechanism of Affecting Sugar Biosynthesis and Distribution in Pear Leaves and Fruit by Potassium Supply. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2017 (in Chinese with English abstract).

[21] Song Y, Cui X, Zhang Y Y, Cong R H, Lu Z F, Li X K, Ren T, Lu J W. Oilseed rape (Brassica napus L.) responses to potassium deficiency stress: accelerated differentiation of microbial communities within specific compartment niches. Plant SoilPublished online [2025-03-10], https://doi.org/10.1007/s11104-025-07335-4.

[22] Fan M C, Li J J, Yan W M, Shi H, Shangguan Z P. Shifts in the structure and function of wheat root-associated bacterial communities in response to long-term nitrogen addition in an agricultural ecosystem. Appl Soil Ecol, 2021, 159: 103852.

[23] Castellano-Hinojosa A, Strauss S L, González-López J, Bedmar E J. Changes in the diversity and predicted functional composition of the bulk and rhizosphere soil bacterial microbiomes of tomato and common bean after inorganic N-fertilization. Rhizosphere, 2021, 18: 100362.

[24] Cui J Y, Yuan X C, Zhang Q F, Zhou J C, Lin K M, Xu J G, Zeng Y Z, Wu Y, Cheng L, Zeng Q X, et al. Nutrient availability is a dominant predictor of soil bacterial and fungal community composition after nitrogen addition in subtropical acidic forests. PLoS One, 2021, 16: e0246263.

[25] Jiang Y F, Zhang Z Y, Jiang J, Zhu F, Guo X Y, Jia P, Li H Z, Liu Z K, Huang S W, Zhang Y F, et al. Enhancement of nitrogen on core taxa recruitment by Penicillium oxalicum stimulated microbially-driven soil formation in bauxite residue. J Hazard Mater, 2024, 473: 134647.

[26] Yang Y, Chen X L, Liu L X, Li T, Dou Y X, Qiao J B, Wang Y Q, An S S, Chang S X. Nitrogen fertilization weakens the linkage between soil carbon and microbial diversity: a global meta-analysis. Glob Change Biol, 2022, 28: 6446–6461.

[27] Li F F, Sun A Q, Jiao X Y, Yu D T, Ren P X, Wu B X, He P, Bi L, He J Z, Hu H W. Nitrogenous fertilizer plays a more important role than cultivars in shaping sorghum-associated microbiomes. Sci Total Environ, 2024, 943: 173831.

[28] 朱志浩, 刘辉, 邵留, 叶建锋. 废水培养微藻藻种遴选及其组分积累的研究进展. 微生物学报, 2022, 62: 1322–1333.

Zhu Z H, Liu H, Shao L, Ye J F. Research progress on species screening and organic component accumulation in microalgae cultivation with wastewater. Acta Microbiol Sin, 2022, 62: 1322–1333 (in Chinese with English abstract).

[29] Li Q, He Y, Feng J, He Y T, Zhang S. Pseudomonas fluorescens inoculation enhances Salix matsudana growth by modifying phyllosphere microbiomes, surpassing nitrogen fertilization. Plant Cell Environ, 2025, 48: 599–614.

[30] Liu C, Bai Z, Luo Y, Zhang Y F, Wang Y F, Liu H X, Luo M, Huang X F, Chen A L, Ma L G, et al. Multiomics dissection of Brassica napus L. lateral roots and endophytes interactions under phosphorus starvation. Nat Commun, 2024, 15: 9732.

[31] De S, Das R, Adhikari M, Ghosh P, Mohanty J P, Sharma C. An updated review on Alstonia scholaris: a delightful therapeutic plant. J Med Plants Stud, 2024, 12: 43–51.

[32] Zhou Y, Jia B S, Zhou Y G, Li A H, Xue L. Naganishia floricola sp. nov., a novel basidiomycetous yeast species isolated from flowers of Sorbaria sorbifoliaInt J Syst Evol Microbiol, 2020, 70: 4496–4501.

[33] Setiawan W, Wiyono S, Tondok E T, Kanti A, Sudiana I M. In vitro study of action mode of Rhodotorula minuta dmg 16 BEP as biocontrol agents on Alternaria solaniJ Perlindungan Tanaman Indonesia, 2020, 24: 28.

[34] Gafur A. Development of biocontrol agents to manage major diseases of tropical plantation forests in Indonesia: A Review. Environ Sci Proc, 20213: 11.

[35] Lekberg Y, Arnillas C A, Borer E T, Bullington L S, Fierer N, Kennedy P G, Leff J W, Luis A D, Seabloom E W, Henning J A. Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nat Commun, 2021, 12: 3484.

[36] 倪绯. 不同农艺措施对油菜角果碳氮代谢与油脂积累的影响. 华中农业大学博士学位论文, 湖北武汉, 2018.

Ni F. Effects of Different Agronomic Measures on Carbon and Nitrogen Metabolism and Oil Accumulation in Rapeseed Pods. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2018 (in Chinese with English abstract). 

[37] 杨灵. 氮镁协同对冬油菜氮效率及籽粒产量品质形成的影响. 中国农业科学院硕士学位论文, 北京, 2022.

Yang L. Effects of Nitrogen and Magnesium Cooperation on Nitrogen Use Efficiency and the Formation of Seed Yield and Quality in Winter Rapeseed. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2022 (in Chinese with English abstract). 

[38] Fabiańska I, Sosa-Lopez E, Bucher M. The role of nutrient balance in shaping plant root-fungal interactions: facts and speculation. Curr Opin Microbiol, 2019, 49: 90–96.

[39] Liu Y H, Chu G, Stirling E, Zhang H Q, Chen S, Xu C M, Zhang X F, Ge T D, Wang D Y. Nitrogen fertilization modulates rice seed endophytic microbiomes and grain quality. Sci Total Environ, 2023, 857: 159181.

[40] Eiler A, Heinrich F, Bertilsson S. Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J, 2012, 6: 330–342.

[41] Ma L N, Zhang C X, Xu X F, Wang C W, Liu G F, Liang C Z, Zuo X A, Wang C J, Lyu Y X, Wang R Z. Different facets of bacterial and fungal communities drive soil multifunctionality in grasslands spanning a 3500 km transect. Funct Ecol, 2022, 36: 3120–3133.

[42] Liu J, Abdelfattah A, Norelli J, Burchard E, Schena L, Droby S, Wisniewski M. Apple endophytic microbiota of different rootstock/scion combinations suggests a genotype-specific influence. Microbiome, 2018, 6: 18.

[43] 方哲, 操文军, 刘娟, 张思琪, 肖志强, 单杨. 利用代谢工程改造谷氨酸棒杆菌产丙酮酸研究. 食品科学技术学报, 2023, 41(3): 139–147.

Fang Z, Cao W J, Liu J, Zhang S Q, Xiao Z Q, Shan Y. Modification of Corynebacterium glutamicum by metabolic engineering for pyruvate production. J Food Sci Technol, 2023, 41(3): 139147 (in Chinese with English abstract).

[44] Wang F, Wei Y L, Yan T Z, Wang C C, Chao Y H, Jia M Y, An L Z, Sheng H M. Sphingomonas sp. Hbc-6 alters physiological metabolism and recruits beneficial rhizosphere bacteria to improve plant growth and drought tolerance. Front Plant Sci, 2022, 13: 1002772.

[45] Cordovez V, Schop S, Hordijk K, Dupré de Boulois H, Coppens F, Hanssen I, Raaijmakers J M, Carrión V J. Priming of plant growth promotion by volatiles of root-associated Microbacterium spp. Appl Environ Microbiol, 2018, 84: e01865–18.

[46] Salvador López J M, Vandeputte M, Van Bogaert I N A. Oleaginous yeasts: time to rethink the definition? Yeast, 2022, 39: 553–606.

[47] Nizovoy P, Bellora N, Haridas S, Sun H, Daum C, Barry K, Grigoriev I V, Libkind D, Connell L B, Moliné M. Unique genomic traits for cold adaptation in Naganishia vishniacii, a polyextremophile yeast isolated from AntarcticaFEMS Yeast Res, 2021, 21: foaa056.

[48] Ren H L, Hong H L, Zha B R, Lamlom S F, Qiu H M, Cao Y Q, Sun R J, Wang H R, Ma J K, Zhang H B, et al. Soybean productivity can be enhanced by understanding rhizosphere microbiota: evidence from metagenomics analysis from diverse agroecosystems. Microbiome, 2025, 13: 105.

[1] 付江鹏, 柳发财, 闫宝琴, 王永栋, 李利利, 魏玮, 周英霞. 控释肥替代普通尿素对旱作高粱干物质积累分配、产量和品质的影响[J]. 作物学报, 2025, 51(9): 2501-2513.
[2] 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203.
[3] 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163.
[4] 王曜阔, 王文政, 张敏, 刘希伟, 杨敏, 李昊昱, 张灵鑫, 闫彦菲, 蔡瑞国. 水氮运筹对冬小麦籽粒GMP合成和面粉加工品质的影响[J]. 作物学报, 2025, 51(8): 2176-2189.
[5] 王彬, 蒙姜宇, 邱浩良, 贺亚军, 钱伟. 甘蓝型油菜BnaDUF579基因家族的鉴定与表达模式分析[J]. 作物学报, 2025, 51(8): 2100-2110.
[6] 樊友众, 王先领, 王宗铠, 王春云, 王天尧, 谢捷, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 周广生. 秸秆还田耦合氮肥运筹对稻茬油菜光合性能及产量的影响[J]. 作物学报, 2025, 51(8): 2139-2151.
[7] 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933.
[8] 李炳霖, 叶晓磊, 肖红, 肖国滨, 吕伟生, 刘君权, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜产量和镁吸收量及因冻害减产程度的影响[J]. 作物学报, 2025, 51(7): 1850-1860.
[9] 武斌, 曹永刚, 胡发龙, 殷文, 樊志龙, 范虹, 柴强. 免耕轮作对减氮小麦产量下降的补偿效果[J]. 作物学报, 2025, 51(7): 1959-1968.
[10] 崔鑫, 谷贺贺, 宋毅, 张哲, 刘诗诗, 陆志峰, 任涛, 鲁剑巍. 钾肥用量对油菜产量和钾素积累及因冻害减产程度的影响[J]. 作物学报, 2025, 51(6): 1629-1642.
[11] 李世鹏, 陈才武, 张晶, 吕恬, 傅廷栋, 易斌. 基于改进U-Net++模型的油菜pol TCMS温敏两系育性等级鉴定及温度育性关系的量化研究[J]. 作物学报, 2025, 51(6): 1423-1434.
[12] 张金泽, 周庆国, 肖莉晶, 金海润, 欧阳青静, 龙旭, 晏中彬, 田恩堂. 芥菜型油菜不同组织硫苷含量的QTL定位与候选基因分析[J]. 作物学报, 2025, 51(5): 1166-1177.
[13] 王清华, 朱格格, 方雯, 刘诗诗, 鲁剑巍. 基于高光谱遥感的油菜叶片氮磷养分含量诊断[J]. 作物学报, 2025, 51(5): 1326-1337.
[14] 王佳婕, 王正楠, BATOOL Maria, 王旺年, 文静, 任长忠, 何峰, 武优悠, 徐正华, 王晶, 蒯婕, 汪波, 周广生, 傅廷栋. 油菜和小麦响应盐碱胁迫的生理特性比较[J]. 作物学报, 2025, 51(5): 1215-1229.
[15] 盛倩男, 方娅婷, 赵剑, 杜思垚, 胡行珍, 余秋华, 朱俊, 任涛, 鲁剑巍. 不同养分管理措施对稻田和旱地油菜产量的影响及其对冻害的响应[J]. 作物学报, 2025, 51(5): 1286-1298.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!