欢迎访问作物学报,今天是

作物学报

• •    

Bna-miR1040-EIF3A模块调控油菜开花时间的功能研究

马毅娜,吴晓明玉,李藕琪,王圆,陈丽,张盈川,赵伦,文静,傅廷栋,沈金雄*   

  1. 华中农业大学作物遗传改良全国重点实验室 / 国家油菜工程技术研究中心 / 洪山实验室, 湖北武汉430070
  • 收稿日期:2025-06-03 修回日期:2025-10-30 接受日期:2025-10-30 网络出版日期:2025-11-05
  • 通讯作者: 沈金雄, E-mail: jxshen@mail.hzau.edu.cn
  • 基金资助:
    本研究由国家自然科学基金项目(31930032)和财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-12)资助。

Functional analysis of the Bna-miR1040–EIF3A module in regulating flowering time in rapeseed (Brassica napus)

Ma Yi-Na,Wu Xiao-Ming-Yu,Li Ou-Qi,Wang Yuan,Chen Li,Zhang Ying-Chuan,Zhao Lun,Wen Jing,Fu Ting-Dong,Shen Jin-Xiong*   

  1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University / National Engineering Research Center of Rapeseed / Hongshan Laboratory, Wuhan 430070, Hubei, China
  • Received:2025-06-03 Revised:2025-10-30 Accepted:2025-10-30 Published online:2025-11-05
  • Contact: 沈金雄, E-mail: jxshen@mail.hzau.edu.cn
  • Supported by:
    This study was supported by National Natural Science Foundation of China project (31930032) and the China Agriculture Research System of MOF and MARA (CARS-12).

摘要: 开花时间是作物重要发育性状,对作物产量有显著影响。miRNA是一类由生物体内源MIR基因转录后加工而形成的小分子RNA,可通过切割靶基因影响靶基因的表达。前期研究基础上在甘蓝型油菜中发现一个未知生物学功能的新的小分子RNAnovel-Bna-miR1040,本研究过表达Bna-miR1040的甘蓝型油菜较野生型花期延迟。降解组测序表明BnaEIF3ABna-miR1040的潜在靶基因,5'RACE和烟草瞬时转化试验表明,Bna-miR1040可以切割BnaEIF3A,使BnaEIF3A的表达量降低;进化分析结果表明,BnaEIF3A在不同物种中具有保守性;亚细胞定位结果显示BnaEIF3A定位在细胞核上;通过CRISPR/cas9创建BnaEIF3A的功能缺失突变体,突变体较野生型也表现为花期延迟。本研究结果为甘蓝型油菜miRNA调控开花时间提供了数据,为甘蓝型油菜不同花期品种选育提供了理论参考。

关键词: 甘蓝型油菜, miRNA, Bna-miR1040, EIF3A, 开花时间

Abstract: Flowering time is a critical developmental trait in crops that significantly influences yield. MicroRNAs (miRNAs), a class of small endogenous RNAs processed from MIR gene transcripts, regulate gene expression by mediating transcript cleavage. In this study, we identified a novel miRNA—novel-Bna-miR1040—in rapeseed (Brassica napus), whose biological function had not been previously characterized. Transgenic rapeseed plants overexpressing Bna-miR1040 exhibited delayed flowering compared to wild-type plants. Degradome sequencing identified BnaEIF3A as a potential target of Bna-miR1040. This interaction was validated by 5′ RACE and transient expression assays in tobacco leaves, which confirmed that Bna-miR1040 cleaves BnaEIF3A, significantly reducing its transcript levels. Evolutionary analysis showed that BnaEIF3A is highly conserved across diverse plant species. Subcellular localization analysis revealed that the BnaEIF3A protein is exclusively localized in the nucleus. To further investigate its function, we generated BnaEIF3A loss-of-function mutants using CRISPR/Cas9 genome editing. These mutants also exhibited delayed flowering phenotypes compared to wild-type controls. Together, our findings demonstrate that Bna-miR1040 regulates flowering time in rapeseed by suppressing BnaEIF3A expression, providing novel insights for molecular breeding strategies aimed at optimizing flowering time in rapeseed.

Key words: Brassica napus, miRNA, Bna-miR1040, EIF3A, flowering time

[1] Verrico B, Preston J C. Historic rewiring of grass flowering time pathways and implications for crop improvement under climate change. New Phytol, 2025, 245: 1864–1878.

[2] Collins C G, Angert A L, Clark K, et al. Flowering time responses to warming drive reproductive fitness in a changing Arctic. Ann Bot, 2025, 135: 255–268.

[3] Praena J, van Veen E, Henriques R, et al. Assessing flowering time under different photoperiods. Methods Mol Biol, 2022, 2494: 101–115.

[4] Yang H Y. Solar rhythm in the regulation of photoperiodic flowering of long-day and short-day plants. J Exp Bot, 2013, 64: 2643–2652.

[5] Xu S J, Chong K. Remembering winter through vernalisation. Nat Plants, 2018, 4: 997–1009.

[6] Zhu Y, Klasfeld S, Jeong C W, et al. TERMINAL FLOWER 1-FD complex target genes and competition with FLOWERING LOCUS T. Nat Commun, 2020, 11: 5118.

[7] 万明. BnaFTsBnaFLCs协同调控油菜开花时间和生态型分化的遗传基础华中农业大学博士学位论文, 湖北武汉, 2024.

Wan M. Genetic Basis of Flowering Time and Ecotypedifferentiation Coordinately Regulated by BnaFTs and BnaFLCs in Rapeseed (Brassica napus L.). PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2024 (in Chinese with English abstract).

[8] Li C, Zhang B H. microRNAs in control of plant development. J Cell Physiol, 2016, 231: 303–313.

[9] Tang G L, Reinhart B J, Bartel D P, et al. A biochemical framework for RNA silencing in plants. Genes Dev, 2003, 17: 49–63.

[10] Kasschau K D, Xie Z X, Allen E, et al. P1/HC-pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell, 2003, 4: 205–217.

[11] Chen X M. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004, 303: 2022–2025.

[12] Galagali H, Kim J K. The multifaceted roles of microRNAs in differentiation. Curr Opin Cell Biol, 2020, 67: 118–140.

[13] Zhou D, Zhao S K, Zhou H Y, et al. A lncRNA bra-miR156HG regulates flowering time and leaf morphology as a precursor of miR156 in Brassica campestris and Arabidopsis thaliana. Plant Sci, 2023, 337: 111889.

[14] Wang J W, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell, 2009, 138: 738–749.

[15] Zhang B L, Chen X M. Secrets of the MIR172 family in plant development and flowering unveiled. PLoS Biol, 2021, 19: e3001099.

[16] Wang J L, Mei J, Ren G D. Plant microRNAs: biogenesis, homeostasis, and degradation. Front Plant Sci, 2019, 10: 360.

[17] Hussain M A, Huang Y, Luo D, et al. Integrative analyses reveal Bna-miR397a-BnaLAC2 as a potential modulator of low-temperature adaptability in Brassica napus L. Plant Biotechnol J, 2025, 23: 1968–1987.

[18] Li J, Duan Y J, Sun N L, et al. The miR169n-NF-YA8 regulation module involved in drought resistance in Brassica napus L. Plant Sci, 2021, 313: 111062.

[19] Browning K S, Bailey-Serres J. Mechanism of cytoplasmic mRNA translation. Arabidopsis Book, 2015, 13: e0176.

[20] Querol-Audi J, Sun C M, Vogan J M, et al. Architecture of human translation initiation factor 3. Structure, 2013, 21: 920–928.

[21] 李竑, 沈思师, 许智宏, 等. 水稻eIF3大亚基(eIF3a)编码基因的克隆及其表达模式分析. 实验生物学报, 2003, 36(1): 54–60.

Li H, Shen S S, Xu Z H, et al. Isolation and expression pattern analysis of rice auxin-induced eIF3a coding gene. Acta Biol Exp Sin, 2003, 36(1): 54–60.

[22] Yahalom A, Kim T H, Roy B, et alArabidopsis eIF3e is regulated by the COP9 signalosome and has an impact on development and protein translation. Plant J, 2008, 53: 300–311.

[23] Xia C, Wang Y J, Li W Q, et al. The Arabidopsis eukaryotic translation initiation factor 3, subunit F (AteIF3f), is required for pollen germination and embryogenesis. Plant J, 2010, 63: 189–202.

[24] Singh B, Chauhan H, Khurana J P, et al. Evidence for the role of wheat eukaryotic translation initiation factor 3 subunit g (TaeIF3g) in abiotic stress tolerance. Gene, 2013, 532: 177–185.

[25] 方振, 李谷成. 我国油菜籽增产潜力与实现路径. 中国油脂, 2025, 50(4): 1–9.

Fang Z, Li G C. Potential and realization path of rapeseed yield increase in China. China Oils Fats, 2025, 50(4): 1–9 (in Chinese with English abstract).

[26] Chen L, Chen L, Zhang X X, et al. Identification of miRNAs that regulate silique development in Brassica napus. Plant Sci, 2018, 269: 106–117.

[27] Liu H, Chen W D, Li Y S, et al. CRISPR/Cas9 technology and its utility for crop improvement. Int J Mol Sci, 2022, 23: 10442.

[28] Wang Y, Wu W H. Potassium transport and signaling in higher plants. Annu Rev Plant Biol, 2013, 64: 451–476.

[29] Chen C J, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194–1202.

[30] Bujarrabal A, Schumacher B. Hormesis running hot and cold. Cell Cycle, 2016, 15: 3335–3336.

[31] Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc, 2008, 3: 1101–1108.

[32] Liu Q, Wang C, Jiao X Z, et al. Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Sci China Life Sci, 2019, 62: 1–7.

[33] Xie F L, Huang S Q, Guo K, et al. Computational identification of novel microRNAs and targets in Brassica napus. FEBS Lett, 2007, 581: 1464–1474.

[34] Xu M Y, Dong Y, Zhang Q X, et al. Identification of miRNAs and their targets from Brassica napus by high-throughput sequencing and degradome analysis. BMC Genomics, 2012, 13: 421.

[35] Wang W Y, Xu M Y, Liu X J, et al. The rice eukaryotic translation initiation factor 3 subunit e (OseIF3e) influences organ size and pollen maturation. Front Plant Sci, 2016, 7: 1399.

[36] Shen Y F, Sun S, Hua S J, et al. Analysis of transcriptional and epigenetic changes in hybrid vigor of allopolyploid Brassica napus uncovers key roles for small RNAs. Plant J, 2017, 91: 874–893.

[37] Cuperus J T, Fahlgren N, Carrington J C. Evolution and functional diversification of MIRNA genes. Plant Cell, 2011, 23: 431–442.

[38] Cui C, Wang J J, Zhao J H, et al. A Brassica miRNA regulates plant growth and immunity through distinct modes of action. Mol Plant, 2020, 13: 231–245.

[39] Fahlgren N, Howell M D, Kasschau K D, et al. High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One, 2007, 2: e219.

[40] Rogers K, Chen X M. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell, 2013, 25: 2383–2399.

[41] Jeong D H, Park S, Zhai J X, et al. Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage. Plant Cell, 2011, 23: 4185–4207.

[42] Wang J, Jian H J, Wang T Y, et al. Identification of microRNAs actively involved in fatty acid biosynthesis in developing Brassica napus seeds using high-throughput sequencing. Front Plant Sci, 2016, 7: 1570.

[43] Raabe K, Honys D, Michailidis C. The role of eukaryotic initiation factor 3 in plant translation regulation. Plant Physiol Biochem, 2019, 145: 75–83.

[44] Yang M K, Lin W J, Xu Y R, et al. Flowering-time regulation by the circadian clock: from Arabidopsis to crops. Crop J, 2024, 12: 17–27.

[1] 王彬, 蒙姜宇, 邱浩良, 贺亚军, 钱伟. 甘蓝型油菜BnaDUF579基因家族的鉴定与表达模式分析[J]. 作物学报, 2025, 51(8): 2100-2110.
[2] 王琼, 邹丹霞, 陈兴运, 张威, 张红梅, 刘晓庆, 贾倩茹, 魏利斌, 崔晓艳, 陈新, 王学军, 陈华涛. 大豆开花时间和成熟期性状全基因组关联分析与候选基因预测[J]. 作物学报, 2025, 51(6): 1558-1568.
[3] 李文佳, 廖泳俊, 黄璐, 鲁清, 李少雄, 陈小平, 金晶炜, 王润风. 花生开花时间的全基因组关联分析及候选基因筛选[J]. 作物学报, 2025, 51(5): 1400-1408.
[4] 夏琦, 郭滢, 王坤美, 王思忆, 巨建业, 彭雅雯, 刘忠松, 夏石头. 甘蓝型油菜种子和种皮中水杨酸含量与原花色素积累的关系研究[J]. 作物学报, 2025, 51(5): 1189-1197.
[5] 王晓琳, 刘忠松, 康雷, 杨柳. 甘蓝型油菜角果长度和每角粒数基因定位以及角果皮转录组动态分析[J]. 作物学报, 2025, 51(4): 888-899.
[6] 张琴, 戴成, 马朝芝. 生长素响应报告基因转化甘蓝型油菜及各组织GUS动态信号分析[J]. 作物学报, 2025, 51(3): 667-675.
[7] 孙程明, 周晓婴, 陈锋, 张维, 王晓东, 彭琦, 郭月, 高建芹, 胡茂龙, 付三雄, 张洁夫. 长链非编码RNA (lncRNA)在甘蓝型油菜分枝角度调控中的功能分析与预测[J]. 作物学报, 2025, 51(3): 559-567.
[8] 巨建业, 杨柳, 陈浩, 康雷, 夏石头, 刘忠松. 单细胞核转录组分析揭示油菜种皮分化过程和种子颜色差异原因[J]. 作物学报, 2025, 51(11): 2860-2874.
[9] 张雯, 李玉, 王创, 石磊, 丁广大. 甘蓝型油菜磷转运蛋白BnaPT48的功能研究[J]. 作物学报, 2025, 51(11): 2983-2995.
[10] 王晨, 贺丹, 姚敏, 邱萍, 何昕, 熊兴华, 康雷, 刘忠松, 钱论文. 基于转录组分析鉴定甘蓝型油菜开花候选基因以及BnaCOR27功能验证[J]. 作物学报, 2025, 51(10): 2693-2704.
[11] 胡志康, 舒雨, 王会, 杨莹莹, 廖俊宇, 刘佳, 成洪涛, 郭晨, 张园园, 刘胜毅, 胡琼, 梅德圣, 李超. 甘蓝型油菜苗期耐碱性种质综合鉴定与评价[J]. 作物学报, 2025, 51(10): 2681-2692.
[12] 徐林珊, 郜耿东, 王宇, 王家星, 杨吉招, 武亚瑞, 张宵寒, 常影, 李真, 谢雄泽, 龚德平, 王晶, 葛贤宏. 甘蓝型油菜漆酶基因家族成员表达模式及与茎秆抗折力的关联分析[J]. 作物学报, 2025, 51(1): 134-148.
[13] 李嘉欣, 黄莹, 吴潞梅, 赵伦, 易斌, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 文静. 甘蓝型油菜BnaSLY1基因进化分析及功能研究[J]. 作物学报, 2025, 51(1): 44-57.
[14] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
[15] 钟元, 朱天宇, 戴成, 马朝芝. 耐亚磷酸盐除草剂转基因油菜的创建和抗性评价[J]. 作物学报, 2024, 50(5): 1158-1171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!