欢迎访问作物学报,今天是

作物学报 ›› 2006, Vol. 32 ›› Issue (05): 656-660.

• 研究论文 • 上一篇    下一篇

水稻叶曲线特征的机理模型

石春林;朱艳;曹卫星   

  1. 南京农业大学江苏省信息农业高技术研究重点实验室/农业部作物生长调控重点开放实验室,江苏南京 210095
  • 收稿日期:2005-04-16 修回日期:1900-01-01 出版日期:2006-05-12 网络出版日期:2006-05-12
  • 通讯作者: 朱艳

A Quantitative Analysis on Leaf Curvature Characteristics in Rice

SHI Chun-Lin; ZHU Yan and CAO Wei-Xing   

  1. Hi-Tech Key Laboratory of Information Agriculture of Jiangsu Province/Key Laboratory of Crop Growth Regulation of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu
  • Received:2005-04-16 Revised:1900-01-01 Published:2006-05-12 Published online:2006-05-12
  • Contact: ZHU Yan

摘要:

通过对水稻叶片的受力分析,推导了叶曲线方程,并进行了影响系数的参数化和方程求解。对叶曲线方程的灵敏度分析表明,方程较好地体现了叶长、叶宽、叶形、比叶重和叶片形变系数等参数对叶曲线的综合影响,与生产中水稻株型特征变化相一致。进一步利用三维数字化仪获得的不同品种类型水稻拔节期和孕穗期叶脉空间坐标试验数据对叶曲线方程进行了模拟分析,结果表明叶曲线方程可以合理而可靠地定量描述水稻叶曲线特征的动态变化规律。

关键词: 水稻, 叶形, 叶曲线, 定量模型, 虚拟作物

Abstract:

With the development of computer graphics and crop simulation, virtual crop study, intuitionally expressing crop growth on computer, attracted many scientists to focus on this field. Some scientists have made great progress on the visualization of wheat, maize, soybean, rice and cotton, etc. Leaf shape is a very important characteristic in virtual crop growth modeling, and some empirical curves have been used to describe leaf morphology based on field experiments in the previous study. The fitting curves can help to understand organ morphogenesis, but the fitting parameters obtained from the given leaves and time cannot suit to changed growth process of leaves. So developing a mechanism model to simulate the leaf morphology is critical for virtual crop growth.
Organ morphogenesis of plant is decided to its forces. After force analysis on a rice leaf, the gravity fraction in leaf normal direction keeps equilibrium with elasticity, and then a dynamic leaf curvature equation was deduced with some assumption. The equation included the synthetic effect of leaf blade length, leaf blade width, initial leaf angle, specific leaf weight and deformation coefficient on leaf space shape. Then the equation was solved with parameterization. The sensitivity analysis showed that the equation could well reflect the integrated effects of leaf length, leaf width, specific leaf weight and leaf deformation coefficient, consistent with rice plant architecture in practice.
A field experiment was conducted at the Nanjing Agricultural University for validating the equation. Two cultivars (SU63 and WYG7) were nursed in dry-bed on May 20, and transplanted on June 20 with single seedling. Water and nutrients were supplied according to high yielding rice management. At jointing and booting stage of rice, the 3-dimension coordinates of several points in leaf midrib were measured with the 3D digitizer, and at the same time leaf blade length, width, initial leaf angle were obtained. Then simulation analyses were conducted on the equation with the experiment data. The results indicated that the leaf curvature equation could reasonably and reliably describe the change pattern of leaf shape characteristics of rice under different conditions.
The leaf curve equation could dynamically simulate the space shape of leaves with different initial leaf angles and special leaf weights by reduced parameters of rice leaf, especially in modeling day-to-day crop growth.

Key words: Rice, Leaf shape, Leaf curvature, Quantitative modeling, Virtual crop

中图分类号: 

  • S511
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!