欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (11): 2055-2063.doi: 10.3724/SP.J.1006.2009.02055

• 耕作栽培·生理生化 • 上一篇    下一篇

水氮互作下水稻氮代谢关键酶活性与氮素利用的关系

孙永健,孙园园,李旭毅,郭翔,马均*   

  1. 四川农业大学水稻研究所,四川温江611130
  • 收稿日期:2009-06-15 修回日期:2009-06-27 出版日期:2009-11-12 网络出版日期:2009-09-10
  • 通讯作者: 马均, E-mail: majunp2002@163.com
  • 基金资助:

    本研究由国家粮食丰产工程项目(2006BAD02A05)和四川省育种攻关专项(2006yzgg-28)资助。

Relationship of Activities of Key Enzymes Involved in Nitrogen Metabolism with Nitrogen Utilization in Rice under Water-Nitrogen Interaction

SUN Yong-Jian,SUN Yuan-Yuan,LI Xu-Yi,GUO Xiang,MA Jun*   

  1. Rice Research Institute,Sichuan Agricultural University,Wenjiang 611130,China
  • Received:2009-06-15 Revised:2009-06-27 Published:2009-11-12 Published online:2009-09-10
  • Contact: MA Jun, E-mail: majunp2002@163.com

摘要:

杂交稻冈优527为材料,设淹水灌溉”(W1)前期湿润灌溉+孕穗期浅水灌溉+抽穗至成熟期干湿交替灌溉”(W2)旱种”(W3)3种灌水及不同的施氮量处理,研究对水稻氮代谢酶活性及氮素吸收利用的影响,并探讨各生育期水稻氮代谢酶活性与氮素吸收利用及产量间的关系。结果表明,水与氮对水稻各生育期氮代谢酶活性及氮素吸收利用有显著互作作用,W2相对于其他灌水处理有助于拔节至抽穗期水稻吸氮量的增加,提高氮素干物质生产效率及稻谷生产效率,而且与施氮量为180 kg hm-2 耦合能达到提高氮代谢酶活性、增产、提高氮肥利用效率的目的,为本试验最佳的水氮耦合运筹模式;施氮量达270 kg hm-2 时水氮互作优势减弱,不利于3种灌水方式下硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合酶(GOGAT)活性的提高,还会导致产量及氮效率的下降。相关分析表明,水氮互作下各氮代谢酶活性与氮素利用特征及产量间存在显著或极显著的相关性,据此可将各生育期功能叶GS活性作为准确判断水稻各生育期氮素积累量的指标;并可将抽穗期剑叶中NRGSGOGAT及内肽酶(EP)活性作为综合评价水稻产量及氮效率的指标。

关键词: 水稻, 水氮互作, 氮代谢, 酶活性, 氮素利用

Abstract:

Hybrid rice Gangyou 527 was used to investigate the effects of three irrigation regimes (submerged irrigation, W1; dry cultivation, W3; and damp irrigation before booting stage plus shallow irrigation at booting stage plus wetting-drying alternation irrigation from heading stage to mature stage, W2) and different amounts ofN application onactivities of N metabolism enzymes and N absorption and utilization in rice, and the correlation of the N metabolism enzymes activities in functional leaves with N absorption and utilization and yield at different growth stages. The results showed that there was an obvious interaction between irrigation regime and amounts ofN application. Compared with other irrigation treatments, the treatment W2 promoted the N uptake from tillering to heading, N dry matter production efficiency (NMPE) and N production efficiency (NPE). W2 and suitable N application amount (180 kg ha-1) enhanced activities of N metabolism enzymes, yield, and nitrogen use efficiency, being the best model in this paper referred as the water-nitrogen coupling management model. Applying nitrogen 270 kg ha-1 resultedin negative effect of water-nitrogen interaction, slowing down the increase of activities of nitrate reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT), decreasing N agronomy efficiency (NAE), N recovery efficiency (NRE), and yield. Correlation analysis indicated that there existed significantly or highly significantly positive correlations of activities of N metabolism enzymes with indices of N uptake and utilization and yield, with different correlation coefficients of different growth stages. According to the conditions above, GS activity in function leaves might be a candidate indicator for N uptake and accumulation at different growth stages, and activities of NR, GS, GOGAT, and endopeptidase (EP) in flag leaves at heading stage for rice yield and NMPE, NPE, NAE, NRE.

Key words: Rice, Water-nitro gen interaction, Nitro gen metabolism, Enzyme Activities, Nitrogen utilization

[1] Yang J-C(杨建昌), Yuan L-M(袁莉民), Chang E-H(常二华), Wang Z-Q(王志琴), Liu L-J(刘立军), Zhu Q-S(朱庆森). Effect of dry-wet alternate irrigation on rice quality and activities of some enzymes in grains during the filling. Acta Agron Sin (作物学报), 2005, 31(8): 1052-1057 (in Chinese with English abstract)

[2] Zhang R-P(张荣萍), Ma J(马均), Wang H-Z(王贺正), Li Y(李艳), Li X-Y(李旭毅), Wang R-Q(汪仁全). Effects of different irrigation regimes on some physiology characteristics and grain yield in paddy rice during grain filling. Acta Agron Sin (作物学报), 2008, 34(3): 486-495 (in Chinese with English abstract)

[3] Ding Y-F(丁艳锋), Liu S-H(刘胜环), Wang S-H(王绍华), Wang Q-S(王强盛), Huang P-S(黄丕生), Ling Q-H(凌启鸿). Effects of the amount of basic and tillering nitrogen applied on absorption and utilization of nitrogen in rice. Acta Agron Sin (作物学报), 2004, 30(8): 762-767 (in Chinese with English abstract)

[4] Zeng Y-J(曾勇军), Shi Q-H(石庆华), Pan X-H(潘晓华), Han T(韩涛). Effects of nitrogen application amount on characteristics of nitrogen utilization and yield formation in high yielding early hybrid rice. Acta Agron Sin (作物学报), 2008, 34(8): 1409-1416 (in Chinese with English abstract)

[5] Wang S-H(王绍华), Cao W-X(曹卫星), Ding Y-F(丁艳锋), Tian Y-C(田永超), Jiang D(姜东).Interactions of water management and nitrogen fertilizer on nitrogen absorption and utilization in rice. Sci Agric Sin (中国农业科学), 2004, 37(4): 497-501 (in Chinese with English abstract)

[6] Chen X-H(陈新红), Liu K(刘凯), Xu G-W(徐国伟), Wang Z-Q(王志琴), Yang J-C(杨建昌). Effects of nitrogen and soil moisture on photosynthetic characters of flag leaf, yield and quality during grain filling in rice. J Shanghai Jiaotong Univ (Agric Sci) (上海交通大学学报·农业科学版), 2004, 22(1): 48-53 (in Chinese with English abstract)

[7] Lu J-L(陆景陵) ed. Plant Nutrition (植物营养学). Beijing: China Agricultural University Press, 2003. pp 23-35 (in Chinese)

[8] Lam H M, Coschigano K T, Oliveira I C. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 569-593

[9] Li H-S(李合生). Experimental Principle and Technique for Plant Physiology and Biochemistry (植物生理生化实验原理和技术). Beijing: Higher Education Press, 2000. pp 125-127 (in Chinese)

[10] Lea P J, Blackwell R D, Chen F L. Enzymes of primary metabolism. In: Harborne J B. Methods in Plant Biochemistry. Vol.3. New York: Academic Press, 1990. pp 260-273

[11] Singh R D, Srivastava H S. Increase in glutamate synthase(NADH) activity in maize seedlings in response to nitrate and ammonium nitrogen. Physical Plant, 1986, 66: 413-416

[12] Gao L(高玲), Ye M-B(叶茂炳), Zhang R-X(张荣铣), Xu L-L(徐朗莱). Endopeptidases in wheat leaves during aging. Acta Phytophysiol Sin (植物生理学报), 1998, 24(2): 183-188 (in Chinese with English abstract)

[13] Mo L-Y(莫良玉), Wu L-H(吴良欢), Tao Q-N(陶勤南). Research advances on GS/GOGAT cycle in higher plants. Plant Nutr Fert Sci (植物营养与肥料学报), 2001, 7(2): 223-231 (in Chinese with English abstract)

[14] Chen S H, Kao C H. The role of proteolytic enzymes in protein degradation during senescence of rice leaves. Physiol Plant, 1984, 62: 231-237

[15] Munjal N, Sawhney S K, Sawhney V. Activation of nitrate reductase in extracts of water stressed wheat. Phytochemistry, 1997, 45: 659-665

[16] Yue S-S(岳寿松), Yu Z-W(于振文), Yu S-L(余松烈). Senescence of flag leaf and root in wheat. Acta Agron Sin (作物学报), 1996, 22(1): 55-58(in Chinese with English abstract)

[17] He Y-Q(何园球), Li C-L(李成亮), Wang X-X(王兴祥), Xiong Y-S(熊又升), Shen Q-R(沈其荣). Effect of soil moisture content and phosphorus application on phosphorus uptake by cultivated in aerobic soil. Acta Pedol Sin(土壤学报), 2005, 42(4): 628-633 (in Chinese with English abstract)

[18] Peng S B, Huang J H, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhang F S, Zhu Q S, Buresh R, Witt C. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Agric Sci China, 2002, 1(7): 776-785

[19] Lin Z-W(林振武), Tang Y-W(汤玉玮). Regulation of nitrate reductase activity in rice. Chem Sci China, 1989, 19(4): 379-385

[20] Hong J-M(洪剑明), Chai X-Q(柴小清), Zeng X-G (曾晓光), Zhang C-Q(张承谦), Li D(李丹), Yin L-P(印莉萍), Huang Q-N(黄勤妮), Chu W-R(储望瑞), Zhao W-P(赵微平). Studies on nitrate reductase activity between nutrition diagnosis and variety breeding of wheat. Acta Agron Sin (作物学报), 1996, 22(5): 633-637 (in Chinese with English abstract)

[21] Hu J(胡健), Yang L-X(杨连新), Zhou J(周娟), Wang Y-L(王余龙), Zhu J-G(朱建国). Effect of free air CO2 enrichment (FACE) and nitrogen level on endopeptidase activities in rice leaves during grain filling stage. Chin J Rice Sci (中国水稻科学), 2008, 22(2): 155-160 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!