作物学报 ›› 2009, Vol. 35 ›› Issue (3): 566-570.doi: 10.3724/SP.J.1006.2009.00566
• 研究简报 • 上一篇
汪结明;江海洋;赵阳;项艳;朱苏文;程备久*
WANG Jie-Ming;JIANG Hai-Yang;ZHAO Yang;XIANG Yan;ZHU Su-Wen;CHENG Bei-Jiu*
摘要:
核苷酸结合位点(NBS)类型抗病基因是植物抗病基因中最大的一个类别,也是近年来植物抗病分子育种研究的一大热点。本研究对玉米自交系B73全基因组中含有NBS结构的候选抗病基因进行了基因总数、类型、系统进化关系等分析。在B73全基因组中含有165个NBS结构的基因,远远少于水稻中的同类基因,按照N-端结构和亮氨酸富集区(LRR)结构, 将其分为153个标准结构和12个非标准结构NBS基因。其中,标准结构基因又分为CC-NBS-LRR、CC-NBS、NBS、NBS-NBS、 NBS-LRR、NBS-NBS-LRR、NBS-X、X-NBS等8个类型。系统进化树分析表明,NBS类型抗病基因存在明显的两大分支,与水稻的星状发散型分布有很大差异。通过基因家族分析,还发现了玉米NBS类型基因的复制现象,但发生复制的基因比例低于水稻,可能是造成玉米NBS抗病基因数目较少的原因之一。
[1]Duan M-X(段民孝), Zhao J-R(赵久然), Wang Y-D(王元东). Study progress in starch of corn Kerne. J Maize Sci (玉米科学), 2002, 10(1): 29–32 (in Chinese with English abstract) [2]Richly E, Kurth J, Leister D. Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Biol Evol, 2002, 19: 76–84 [3]Staskawicz B J, Ausubel F M, Baker B J, Ellis J G, Jones J D. Molecular genetics of plant disease resistance. Science, 1995, 268: 661–667 [4]Holub E. Arms race is an ancient history in Arabidopsis, the wildflower. Nat Rev Genet, 2001, 2: 516–527 [5]Meyers B C, Kaushik S, Nandety R S. Evolving disease resistance genes. Curr Opin Plant Biol, 2005, 8: 129–134 [6]Dangl L J, McDowell J M. Two modes of pathogen recognition by plants. Proc Natl Acad Sci USA, 2006, 103: 8575–8576 [7]Noutoshi Y, Ito T, Seki M, Nakashita H, Yoshida S, Marco Y, Shirasu K, Shinozaki K. A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death. Plant J, 2005, 43: 873–888 [8]Montesinos E, Bonaterra A, Badosa E, Francés J, Alemany J, Llorente I, Moragrega C. Plant-microbe interactions and the new biotechnological methods of plant disease control. Int Microbiol, 2002, 5: 169–175 [9]Lupas A, Van Dyke M, Stock J. Predicting coled coils from protein sequences. Science, 1991, 252: 1162–1164 [10]Xu J H, Messing J.Organization of the prolamin gene family provides insight into the evolution of the maize genome and gene duplications in grass species. Proc Natl Acad Sci USA, 2008, 23:105–138 [11]Tian D, Traw M B, Chen J Q, Kreitman M, Bergelson J. Fitness cost of R-gene mediated resistance in Arabidopsis thaliana. Nature, 2003, 423: 74–77 [12]Chen G, Pan D, Zhou Y, Lin S, Ke X. Diversity and evolutionary relationship of nucleotide binding site-encoding disease-resistance gene analogues in sweet potato (Ipomoea batatas Lam.). J Biosci, 2007, 32: 713–721 [13]Xu Q, Wen X, Deng X. Isolation of TIR and non-TIR NBS-LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt). Theor Appl Genet, 2005, 111: 819–830 [14]Plocik A, Layden J, Kesseli R. Comparative analysis of NBS domain sequences of NBS-LRR disease resistance genes from sunflower, lettuce, and chicory. Mol Phylogenet Evol, 2004, 31: 153–163 [15]Zhou T, Wang Y, Chen J Q, Araki H, Jing Z, Jiang K, Shen J, Tian D C. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics, 2004, 271: 402–415 [16]Bai J, Pennill L A, Ning J, Lee S W, Ramalingam J, Webb C A, Zhao B, Sun Q, Nelson J C, Leach J E, Hulbert S H. Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res, 2002, 12: 1871–1884 [17]Peng G-Z(彭贵子), Chen L-L(陈玲玲), Tian D-C(田大成). Progress in the study of gene duplication. Hereditas (遗传), 2006, 28(7): 886–892 (in Chinese with English abstract) [18]Meyers B C, Morgante M, Michelmore R W. TIR-X and TIR-NBS proteins: Two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J, 2002, 32: 77–92 [19]Meyers B C, Kozik A, Griego A, Kuang H, Michelmore R W. Genome-wide analysis of NBS-LRR-Encoding genes in Arabidopsis. Plant Cell, 2003, 15: 809–834 [20]Noir S, Combes M C, Anthony F, Lashermes P. Origin, diversity and evolution of NBS-type disease-resistance gene homologues in coffee trees (Coffea L.). Mol Genet Genomic, 2001, 265: 654–662 [21]López C E, Zuluaga A P, Cooke R, Delseny M, Tohme J, Verdier V. Isolation of resistance gene candidates (RGCs) and characterization of an RGC cluster in cassava. Mol Genet Genomic, 2003, 269: 658–671 [22]Tan X, Meyers B C, Kozik A, West M A, Morgante M, St Clair D A, Bent A F, Michelmore R W. Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biol, 2007, 23: 56–76 [23]Mondragón-Palomino M, Meyers B C, Michelmore R W, Gaut B S. Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Res, 2002, 12: 1305–1315 [24]Yaish M W, Sáenz de Miera L E, Pérez de la Vega M. Isolation of a family of resistance gene analogue sequences of the nucleotide binding site (NBS) type from Lens species. Genome, 2004, 47: 650–659 [25]Yang S H, Zhang X H, Yue J X, Tian D C, Chen J Q. Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genomics, 2008, 280: 187–198 [26]Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, Meyers BC, Boerjan W, Martin F. Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol, 2008, 66: 619–636 [27]Pan Q, Wendel J, Fluhr R. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol, 2000, 50: 203–213 [28]Shirano Y, Kachroo P, Shah J, Klessig D F. A gain-of-function mutation in an Arabidopsis Toll Interleukin receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell, 2002, 14: 3149–3162 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[7] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[10] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[11] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[12] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[13] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[14] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[15] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
|