欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (3): 566-570.doi: 10.3724/SP.J.1006.2009.00566

• 研究简报 • 上一篇    

玉米自交系B73全基因组NBS类型抗病基因分析

汪结明;江海洋;赵阳;项艳;朱苏文;程备久*   

  1. 安徽农业大学生命科学学院,安徽合肥230036
  • 收稿日期:2008-08-20 修回日期:2008-10-06 出版日期:2009-03-12 网络出版日期:2009-01-16
  • 通讯作者: 程备久
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2008AA10Z408,2006AA10Z1B4)和教育部科学技术研究重点项目(206065)资助

Genome-Wide Analysis of NBS-Encoding disease Resistance Genes in Maize Inbred Line B73

WANG Jie-Ming;JIANG Hai-Yang;ZHAO Yang;XIANG Yan;ZHU Su-Wen;CHENG Bei-Jiu*   

  1. School of Life Science,Anhui Agricultural University,Hefei 230036,China
  • Received:2008-08-20 Revised:2008-10-06 Published:2009-03-12 Published online:2009-01-16
  • Contact: CHENG Bei-Jiu

摘要:

核苷酸结合位点(NBS)类型抗病基因植物抗病基因中最大的一个类别,也是近年来植物抗病分子育种研究的一大热点。本研究对玉米自交系B73全基因组中含有NBS结构的候选抗病基因进行了基因总数、类型、系统进化关系等分析。B73全基因组中含有165NBS结构的基因,远远少于水稻中的同类基因,按照N-端结构和亮氨酸富集区(LRR)结构, 将其分为153个标准结构和12个非标准结NBS基因。其中,标准结构基因又分为CC-NBS-LRRCC-NBSNBSNBS-NBS NBS-LRRNBS-NBS-LRRNBS-XX-NBS8个类型。系统进化树分析表明,NBS类型抗病基因存在明显的两大分支,与水稻的星状发散型分布有很大差异。通过基因家族分析,还发现了玉米NBS类型基因的复制现象,但发生复制的基因比例低于水稻,可能是造成玉米NBS抗病基因数目较少的原因之一。

关键词: 玉米, 生物信息学, 抗病基因, 核苷酸结合位点(NBS), 系统进化树

Abstract:

Nucleotide-binding site (NBS) disease resistance gene is a largest category in plant disease resistance genes, which is a focus in recent studies on molecular breeding of plant disease resistance. Using maize (Zea mays L.) inbred line B73, the complete set of disease resistance candidate genes that encode NBS was identified in the genome. The putative NBS genes were characterized with respect to structural diversity, phylogenetic relationships and so on. One hundred and sixty-five NBS-coding sequences were identified into two types: nonregular (12) and regular NBS genes (153). The amount of NBS genesis much smaller in maize than in japonica rice (Oryza sativa L.). The 153 regular NBS genes were categorized into eight classes, including CC-NBS-LRR, CC-NBS, NBS, NBS-NBS, NBS-LRR, NBS-NBS-LRR, NBS-X, and X-NBS, according to N-terminal motif and leucine-rich repeat (LRR) domains motif. The 165 NBS genes showed two remarkable branches in the phylogenetic tree, differing from the radiation structure in japonica rice. Gene duplication event was observed based on gene family analysis of the NBS disease-resistance genes in maize; however, the ratio of gene duplication was smaller than that in rice. This might be one of the reasons for less NBS disease-resistance genes in maize than in rice.

Key words: Zea mays L., Bioinformatics, Disease resistance gene, Nucleotide binding sity, Phylogenetic tree

[1]Duan M-X(段民孝), Zhao J-R(赵久然), Wang Y-D(王元东). Study progress in starch of corn Kerne. J Maize Sci (玉米科学), 2002, 10(1): 29–32 (in Chinese with English abstract)
[2]Richly E, Kurth J, Leister D. Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Biol Evol, 2002, 19: 76–84
[3]Staskawicz B J, Ausubel F M, Baker B J, Ellis J G, Jones J D. Molecular genetics of plant disease resistance. Science, 1995, 268: 661–667
[4]Holub E. Arms race is an ancient history in Arabidopsis, the wildflower. Nat Rev Genet, 2001, 2: 516–527
[5]Meyers B C, Kaushik S, Nandety R S. Evolving disease resistance genes. Curr Opin Plant Biol, 2005, 8: 129–134
[6]Dangl L J, McDowell J M. Two modes of pathogen recognition by plants. Proc Natl Acad Sci USA, 2006, 103: 8575–8576
[7]Noutoshi Y, Ito T, Seki M, Nakashita H, Yoshida S, Marco Y, Shirasu K, Shinozaki K. A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death. Plant J, 2005, 43: 873–888
[8]Montesinos E, Bonaterra A, Badosa E, Francés J, Alemany J, Llorente I, Moragrega C. Plant-microbe interactions and the new biotechnological methods of plant disease control. Int Microbiol, 2002, 5: 169–175
[9]Lupas A, Van Dyke M, Stock J. Predicting coled coils from protein sequences. Science, 1991, 252: 1162–1164
[10]Xu J H, Messing J.Organization of the prolamin gene family provides insight into the evolution of the maize genome and gene duplications in grass species. Proc Natl Acad Sci USA, 2008, 23:105–138
[11]Tian D, Traw M B, Chen J Q, Kreitman M, Bergelson J. Fitness cost of R-gene mediated resistance in Arabidopsis thaliana. Nature, 2003, 423: 74–77
[12]Chen G, Pan D, Zhou Y, Lin S, Ke X. Diversity and evolutionary relationship of nucleotide binding site-encoding disease-resistance gene analogues in sweet potato (Ipomoea batatas Lam.). J Biosci, 2007, 32: 713–721
[13]Xu Q, Wen X, Deng X. Isolation of TIR and non-TIR NBS-LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt). Theor Appl Genet, 2005, 111: 819–830
[14]Plocik A, Layden J, Kesseli R. Comparative analysis of NBS domain sequences of NBS-LRR disease resistance genes from sunflower, lettuce, and chicory. Mol Phylogenet Evol, 2004, 31: 153–163
[15]Zhou T, Wang Y, Chen J Q, Araki H, Jing Z, Jiang K, Shen J, Tian D C. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics, 2004, 271: 402–415
[16]Bai J, Pennill L A, Ning J, Lee S W, Ramalingam J, Webb C A, Zhao B, Sun Q, Nelson J C, Leach J E, Hulbert S H. Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res, 2002, 12: 1871–1884
[17]Peng G-Z(彭贵子), Chen L-L(陈玲玲), Tian D-C(田大成). Progress in the study of gene duplication. Hereditas (遗传), 2006, 28(7): 886–892 (in Chinese with English abstract)
[18]Meyers B C, Morgante M, Michelmore R W. TIR-X and TIR-NBS proteins: Two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J, 2002, 32: 77–92
[19]Meyers B C, Kozik A, Griego A, Kuang H, Michelmore R W. Genome-wide analysis of NBS-LRR-Encoding genes in Arabidopsis. Plant Cell, 2003, 15: 809–834
[20]Noir S, Combes M C, Anthony F, Lashermes P. Origin, diversity and evolution of NBS-type disease-resistance gene homologues in coffee trees (Coffea L.). Mol Genet Genomic, 2001, 265: 654–662
[21]López C E, Zuluaga A P, Cooke R, Delseny M, Tohme J, Verdier V. Isolation of resistance gene candidates (RGCs) and characterization of an RGC cluster in cassava. Mol Genet Genomic, 2003, 269: 658–671
[22]Tan X, Meyers B C, Kozik A, West M A, Morgante M, St Clair D A, Bent A F, Michelmore R W. Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biol, 2007, 23: 56–76
[23]Mondragón-Palomino M, Meyers B C, Michelmore R W, Gaut B S. Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Res, 2002, 12: 1305–1315
[24]Yaish M W, Sáenz de Miera L E, Pérez de la Vega M. Isolation of a family of resistance gene analogue sequences of the nucleotide binding site (NBS) type from Lens species. Genome, 2004, 47: 650–659
[25]Yang S H, Zhang X H, Yue J X, Tian D C, Chen J Q. Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genomics, 2008, 280: 187–198
[26]Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, Meyers BC, Boerjan W, Martin F. Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol, 2008, 66: 619–636
[27]Pan Q, Wendel J, Fluhr R. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol, 2000, 50: 203–213
[28]Shirano Y, Kachroo P, Shah J, Klessig D F. A gain-of-function mutation in an Arabidopsis Toll Interleukin receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell, 2002, 14: 3149–3162
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[12] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[15] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!