欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (6): 1146-1150.doi: 10.3724/SP.J.1006.2009.01146

• 研究简报 • 上一篇    下一篇

转甜菜碱醛脱氢酶基因马铃薯的抗旱耐盐性

张宁12,司怀军12,栗亮1,杨涛12,张春凤1,王蒂1*   

  1. 1甘肃省作物遗传改良与种质创新重点实验室,甘肃兰州730070;2甘肃农业大学生命科学技术学院,甘肃兰州730070
  • 收稿日期:2008-10-29 修回日期:2009-02-13 出版日期:2009-06-12 网络出版日期:2009-04-16
  • 通讯作者: 王蒂,E-mail:wangd@gsau.edu.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA100107),高等学校博士学科点专项科研基金项目(20050733003),甘肃省农业生物技术研究与应用开发项目(GNSW-2006-01)资助。

Drought and Salinity Tolerance in Transgenic Potato Expressing the Betaine Aldehyde Dehydrogenase Gene

ZHANG Ning12,SI Huai-Jun12,LI Liang1,YANG Tao12,ZHANG Chun-Feng1,WANG Di1*   

  1. 1Gansu Key Laboratory of Crop Genetic & Germplasm enhancement,Gansu Agricultural University,Lanzhou 730070,China;2College of Life Science and Technology,Gansu Agricultural University,Lanzhou 730070,China
  • Received:2008-10-29 Revised:2009-02-13 Published:2009-06-12 Published online:2009-04-16
  • Contact: WANG Di,E-mail:wangd@gsau.edu.cn

摘要:

通过根癌农杆菌介导法将甜菜碱醛脱氢酶(BADH)基因导入马铃薯栽培品种甘农薯2, PCRSouthern杂交和Northern杂交证明BADH基因已整合到马铃薯基因组中并在转基因植株中转录和表达。测定表明对照植株没有BADH酶活性, 各转化株系在胁迫前后BADH酶活性近似, 2~11 U之间。BADH酶活性与叶片的相对电导率呈一定的负相关(y= –3.7738x+57.083, r=0.989**)。在NaClPEG胁迫下, 转基因植株生长正常, 株高比对照提高0.41~1.00 cm, 单株重量比对照增加10%~35%, 说明外源BADH基因的导入提高了马铃薯植株对干旱和盐碱的抗性。

关键词: 马铃薯, 甜菜碱醛脱氢酶, 遗传转化, 抗旱, 耐盐

Abstract:

Glycine betaine (GB) is a common compatible solute in many different organisms including higher plants. Many plant species can accumulate GB in response to drought and salinity. GB is synthesized by conversion of choline to GB through a two-step oxidation via the intermadiate betaine aldehyde. In higher plants, the relevant enzymes are choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH). The fact that many important crops, such as rice, potato and tomato, are betaine-deficient has inevitably led to the proposal that it might be possible to increase drought and salinity tolerances by genetic engineering of GB synthesis. In the present study, the transgenic plants of potato cultivar Gannongshu 2 were obtained by Agrobacterium-mediated transformation of the expression vector pBIBB contained BADH gene under the control of the constitutive promoter CaMV 35S. PCR, Southern and Northern blot analyses showed that the BADH gene was integrated into potato genome, transcribed and expressed in the transgenic plants. The analysis of BADH activity of transgenic plant leaves revealed that the BADH activity ranged from 2 to 11 U, while it was not detectable in the control plants. There was a negative relationship (y= –3.7738x+57.083, r=0.989**) between BADH activity and relative electric conductivity of the transgenic potato leaves. The transgenic potato plants grew normally under NaCl and polyethylene glycol (PEG) stresses with increase of 0.40.9 cm for plant height and 1729% for fresh weight per plant compared with the control plants. This result demonstrated that the transgenic potato plants can improve tolerances to drought and salinity as a result of transformation and expression of BADH gene.

Key words: Potato, Betaine aldehyde dehydrogenase, Genetic transformation, Drought resistance, Salt tolerance

[1] Deblonde P M K, Ledent J F. Effects of moderate drought condition on green leaf number, stem height, leaf length and tuber yield of potato cultivars. Eur J Agron, 2001, 14: 31-41
[2] Chen T H H, Murata N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol, 2002, 5: 250-257

[3] Rathinasabapathi B, McCue K F, Gage D A, Hanson A D. Metabolic engineering of glycine betaine synthesis: Plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta, 1994, 193: 155-162

[4] Ishitani M, Nakamura T, Han S Y, Takabe T. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol Biol, 1995, 27: 307-315

[5] Guo Y(郭岩), Zhang L(张莉), Xiao G(肖岗), Cao S-Y(曹守云), Gu D-M(谷冬梅), Tian W-Z(田文忠), Chen S-Y(陈受宜). Expression of betaine aldehyde dehydrogenase gene and salinity tolerance in rice transgenic plants. Sci China(Ser.C)(中国科学·C辑), 1997, 27(2): 151-155 (in Chinese)

[6] Kishitani S, Takanami T, Suzuki M, Oikawa M, Yokoi S, Ishitani M, Alvarez-Nakase A M, Takabe T, Takabe T. Compatibility of glycinebetaine in rice plants: Evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley. Plant Cell Environ, 2000, 23: 107-114

[7] Guo B-H(郭北海), Zhang Y-M(张艳敏), Li H-J(李洪杰), Du L-C(杜立群), Li Y-X(李银心), Zhang J-S(张劲松), Chen S-Y(陈受宜), Zhu Z-Q(朱至清). Transformation of wheat with a gene encoding for the betaine aldehyde dehydrogenase (BADH). Acta Bot Sin (植物学报), 2000, 42(3): 279-283 (in Chinese with English abstract)

[8] Li Y-X(李银心), Chang F-Q(常凤启), Du L-Q(杜立群), Guo B-H(郭北海), Li H-J(李洪杰), Zhang J-S(张劲松), Chen S-Y(陈受宜), Zhu Z-Q(朱至清). Genetic transformation of watercress with a gene encoding for betaine-aldehyde dehydrogenase (BADH). Acta Bot Sin (植物学报), 2000, 42(5): 480-484 (in Chinese with English abstract)

[9] Liu F-H(刘凤华), Guo Y(郭岩), Gu D-M(谷冬梅), Xiao G(肖岗), Chen Z-H(陈正华), Chen S-Y(陈受宜). Salt tolerance of transgenic plants with BADH cDNA. Acta Genet Sin (遗传学报), 1997, 24(1): 54-58 (in Chinese with English abstract)

[10] Chen C-F(陈传芳), Li Y-W(李义文), Chen Y(陈豫), Bai J-R(白建荣), Li H(李辉), Zhu Y-F(朱银锋), Chen S-Y(陈受宜), Jia X(贾旭). Saline tolerance white clover transformed with the betaine aldehyde dehyrogenase gene by Agrobacterium tumefaciens. Acta Genet Sin (遗传学报), 2004, 31(1): 97-101 (in Chinese with English abstract)

[11] Luo X-L(罗晓丽), Xiao J-L(肖娟丽), Wang Z-A(王志安), Zhang A-H(张安红), Tian Y-C(田颖川), Wu J-H(吴家和). Overexpression of Spinacia oleracea betaine aldehyde dehydrogenase (SoBADH) gene confers the salt and cold tolerant in Gossypium hirsutum L. Chin J Biotechnol (生物工程学报), 2008, 24(8): 1464-1469 (in Chinese with English abstract)

[12] Zhang N(张宁), Wang D(王蒂), Si H-J(司怀军). Isolation and induced expression of betaine aldehyde dehydrogenase gene from spinach. J Agric Biotechnol (农业生物技术学报), 2004, 12(5): 612-613 (in Chinese)

[13] Si H-J(司怀军), Zhang N(张宁), Wang D(王蒂). Enhancement of drought and salt resistances in tobacco by transformation of betaine aldehyde dehydrogenase Gene. Acta Agron Sin (作物学报), 2007, 33(8): 1335-1339 (in Chinese with English abstract)

[14] Liu J(柳俊), Xie C-H(谢从华), Huang D-E(黄大恩), Liao Y(廖勇), Wu C-J(吴承金). Research on forming mechanism of potato microtubers-effects of BA on the formation and growth of microtubers. Chin Potato J (马铃薯杂志), 1995, 9(1): 7-11(in Chinese with English abstract)

[15] Si H-J(司怀军), Xie C-H(谢从华), Liu J(柳俊). An efficient protocol for Agrobacterium-mediated transformation of microtuber and the introduction of an antisense class I patatin gene into potato. Acta Agron Sin (作物学报), 2003, 29(6): 801-805(in English with Chinese abstract)

[16] Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl Acids Res, 1991, 19: 1349

[17] Chomczynski P, Sacchi N. Single step method of RNA isolation by acid guainidium thiocyanate-phenol-chloroform extraction. Anal Biochem, 1987, 162: 156-159

[18] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anayti Biochem, 1976, 72: 248-254

[19] Li H-S(李合生). Principles and Techniques of Plant Physiological and Biochemical Experiment (植物生理生化实验原理与技术). Beijing: Higher Education Press, 2000. pp 261-263(in Chinese)

[20] McCue K F, Hanson A D. Drought and salt tolerance: towards understanding and application. Trends Biotechnol, 1990, 8: 358-362

[21] Yancey P H, Clark M E, Hand S C, Bowlus R D, Somero G N. Living with water stress: Evolution of osmolyte systems. Science, 1982, 217: 1214-1222
Weigle P, Weretilnyk E A, Hanson A D. Betaine aldehyde oxidation by spinach chloroplasts. Plant Physiol, 1986, 82: 753-759
[1] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[2] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[3] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[4] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[5] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[6] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[7] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[8] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[9] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[10] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[11] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[12] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[13] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥[J]. 作物学报, 2021, 47(6): 1090-1099.
[14] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[15] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!