欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (7): 1244-1252.doi: 10.3724/SP.J.1006.2009.01244

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

黄河中游粗山羊草三种y-型高分子量谷蛋白亚基的鉴定、克隆及系统进化分析

苏亚蕊,张大乐,张明,李锁平*   

  1. 河南大学农业生物技术研究所,河南开封475001
  • 收稿日期:2008-12-04 修回日期:2009-02-17 出版日期:2009-07-12 网络出版日期:2009-04-16
  • 通讯作者: 李锁平,E-mail:lisuoping@henu.edu.cn
  • 基金资助:

    本研究由河南省高校杰出人才创新工程项目(HAIPURT,2007KYCX009)资助。

Characterization,Molecular Cloning and Phylogenetic Analysis of Three y-Type High Molecular Weight Glutenin subunit genes from Aegilops tauschii of the Middle Reaches of Yellow River

SU Ya-Rui,ZHANG Da-Le,ZHANG Ming,LI Suo-Ping*   

  1. Research Institute of Agricultural Biotechnology,Henan University,Kaifeng 475001,China
  • Received:2008-12-04 Revised:2009-02-17 Published:2009-07-12 Published online:2009-04-16
  • Contact: LI Suo-Ping,E-mail:lisuoping@henu.edu.cn

摘要:

粗山羊草(Aegilops tauschii, 2n = 2x = 14, DD)是六倍体普通小麦的祖先之一,其高分子量谷蛋白亚基(HMW-GS)变异类型丰富,是小麦品质改良的重要基因资源。利用十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)分析了黄河中游地区161份粗山羊草的HMW-GS,发现3种编码序列未知的y-型亚基,即Dy10.5t、Dy10.4t和Dy10.5*t亚基。通过AS-PCR扩增、克隆、测序和氨基酸序列推导,发现3种未知序列均具有典型HMW-GS的序列结构特征且较为相似,仅Dy10.4t与Dy10.5t亚基存在一个氨基酸重复单元的缺失,Dy10.5t与Dy10.5*t亚基在信号肽部位有一个氨基酸的替换(L-F)。通过对这3种HMW-GS与32个已知氨基酸序列的HMW-GS多序列比对和系统进化关系分析,证实Dy10.5t、Dy10.4t和Dy10.5*t 3个亚基是D基因组编码的高分子量谷蛋白y-型亚基家族的新成员。

关键词: 粗山羊草, 高分子量谷蛋白, 分子克隆, 系统进化

Abstract:

Aegilops tauschii (2n = 2x = 14, DD), an ancestral specie of Tiriticum aestivum (2n = 6x = 42, AABBDD), possesses extensive allelic variation in high molecular weight glutenin subunits (HMW-GS). The elite genetic recourses are of great value in quality improvement of T. aestivum. Ae. tauschii is distributed in the middle reaches of Yellow River, and its HMW-GS genes have not been investigated in large scales. To detect HMW-GS genes in Ae. tauschii resources in this area and to understand its structure and function by sequencing, 161 Ae. tauschii accessions collected in July 2006 were used in this study with Yumai 49 as a control. Through sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) technique, three y-type subunits were observed, named as Dy10.5t, Dy10.4t , and Dy10.5*t. Genes of the three subunits were amplified, cloned and sequenced by allele-specific PCR. The results revealed that the deduced amino acid sequence had typical characters of HMW-GS and a general resemblance to each other, but Dy10.4t had a repeated amino acid motif deletion to Dy10.5t, and Dy10.5*t had an amino acid substitution sites in signal peptide domain to Dy10.5t (L-F). From multiple sequence alignment and phylogenetic analysis of storage protein gene family, it is concluded that the subunits Dy10.5t, Dy10.4t, and Dy10.5*t of Ae. tauschii are similar to the Glu-1 locus found in wheat and related species, and are new members of y-type HWM glutenin family.

Key words: Aegilops tauschii, HWM-GS, Molecular cloning, Phylogenetic relationships

[1] Payne P I. Genetics of wheat storage proteins and the effect of allelic variation on bread making quality. Plant Physiol, 1987, 38: 141-153

[2] Li B-Y(李保云), Wang Y-G(王岳光), Liu F-M(刘凤鸣), Sun H(孙辉), Liu G-T(刘广田). Relationships between high molecular weight glutenin subunits (HMW-GS) and quality traits in wheat (Triticum aestivum L). Acta Agron Sin (作物学报), 2000, 26(3): 322-326 (in Chinese with English abstract)

[3] Mujeeb-Kazi A, Rosas V, Roldan S. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. nonL.) in synthetic hexaploid wheats (Triticum turgidum L. s. lat. × T. tauschii; 2n=6x= 42, AABBDD) and its potential utilization for wheat improvement. Genet Res Crop Evol, 1996, 43: 129-134

[4] William M D H, Pena R J, Mujeeb-Kazi A. Seed protein and isozyme variations in Triticum tauschii (Aegilops squarrosa). Theor Appl Genet, 1993, 87: 257-263

[5] Dvorak J, Luo M C, Yang Z L, Zhang H B. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet, 1998, 97: 657-670

[6] Mackie A M, Sharp P J, Lagudah E S. The nucleotide and derived amino acid sequence of a HMW glutenin gene from Triticum tauschii and comparison with those from the D genome of bread wheat. J Cereal Sci, 1996, 24: 73-78

[7] Zhang Y Z, Li Q Y, Yan Y M, Zheng J G, An X L, Xiao Y H, Wang A L, Pei Y H, Wang H B, Sai L K H, Friedrich J Z. Molecular characterization and phylogenetic analysis of a novel glutenin gene (Dy10.1t) from Aegilops tauschii. Genome, 2006, 49: 735-745

[8] Zhang Y Z, Li X H, Wang A L, An X L, Zhang Q, Pei Y H, Gao L Y, Ma W J, Appels R, Yan Y M. Novel x-type HMW glutenin genes from Aegilops tauschii and their implications on the wheat origin and evolution mechanism of Glu-D1-1 proteins. Genetics, 2008, 178: 23-33

[9] Yan Y, Zheng J, Xiao Y, Yu J, Hu Y, Cai M, Li Y, Hsam S L, Zeller F J. Identification and molecular characterization of a novel y-type Glu-Dt1 glutenin gene of Aegilops tauschii. Theor Appl Genet, 2004, 108: 1349-1358

[10] Lagudah E S, Hilalloran C M. Phylogenetic relationships of Triticum tauschii the D genome donor to hexaploid wheat: I. Variation in HMW subunits of glutenin and gliadins. Theor Appl Genet, 1988,75: 592-598

[11] Peña R J, Zarco-Hernandez J, Mujeeb-Kazi A. Glutenin subunit compositions and breadmaking quality characteristics of synthetic hexaploid wheats derived from Triticum turgidum × Triticum tauschii (cross). Schmal crosses. J Cereal Sci, 1995, 21: 15-23

[12] Sun H(孙辉), Yao D-N(姚大年), Li B-Y(李保云), Liu G-T(刘广田), Zhang S-Z(张树榛). Effects of genetic and environmental factors on the content of glutenin macropolymer. J Triticeae Crops (麦类作物学报), 2000, 20(2): 23-27 (in Chinese with English abstract)

[13] Gainibelli M C, Lagudah E S, Wrigley W C, Macritchit F. Biochemical and genetic characterization of a monomeric storage protein (T1) with an unusually high molecular weight in Triticum tauschii. Theor Appl Genet, 2002, 104: 497-504

[14] Yan Y M, Hsam S L K, Yu J Z, Yi J, Zeller F J. Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by sodium dodecyl sulphate (SDS-PAGE), acid polyarcylamide gel (A-PAGE) and capillary eletrophoresis. Euphytica, 2003, 130: 377-385

[15] Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69-76

[16] Anderson O D, Greene F C, Yip R E, Halford N G, Shewry P R, Malpica-Romero J M. Nucleotide sequences of the two high-molecular-weight glutenin genes from the D-genome of a hexaploid bread wheat, Triticum aestivum L. cv. Cheyenne. Nucl Acids Res, 1989, 17: 461-462

[17] Jiang Q T, Wei Y M, Yan Z H, Zheng Y L. Isolation and sequence analysis of HMW glutenin subunit 1Dy10.1 ecoding gene from Xinjiang wheat (Triticum petropavlovskyi Udacz. et Migusch). Agric Sci China, 2006, 5: 101-105

[18] Thompson R D, Bartels D, Harberd N P. Nucleotide sequence of a gene from chromosome 1D of wheat encoding a HMW-glutenin subunit. Nucl Acids Res, 1985, 13: 6833-6846

[19] Yan Z, Wan Y, Liu K, Zheng Y L, Wang D W. Identification of a novel HMW glutenin subunit and comparison of its amino acid sequence with those of homologous subunits. Chin Sci Bull, 2002, 47: 220-225

[20] Wan Y, Wang D, Shewry P R, Halford N G. Isolation and characterization of five novel high molecular weight subunit of glutenin genes from Triticum timopheevi and Aegilops cylindrical. Theor Appl Genet, 2002, 104: 828-839

[21] Forde J, Malpica J M, Halford N G, Shewry P R, Anderson O D, Greene F C, Miflin B J. The nucleotide sequence of a HMW glutenin subunit gene located on chromosome 1A of wheat (Triticum aestivum L.). Nucl Acids Res, 1985, 13: 6817-6832

[22] Halford N G, Forde J, Anderson O D, Greene F C, Shewry P R. The nucleotide and deduced amino acid sequences of an HMW glutenin subunit gene from chromosome 1B of bread wheat (Triticum aestivum L.) and comparison with those of genes from chromosomes 1A and 1D. Theor Appl Genet, 1987, 75: 117-126

[23] Wang H Q, Zhang X Y. An approach for isolating high-molecular-weight glutenin subunit genes using monoclonal antibodies. Genome, 2006, 49: 181-189

[24] Pang B S, Zhang X Y. Isolation and molecular characterization of high molecular weight glutenin subunit genes 1Bx13 and 1By16 from hexaploid wheat. Plant Biol, 2008, 50: 329-337

De Bustos A, Rubio P, Jouve N. Characterisation of two gene subunits on the 1R chromosome of rye as orthologs of each of the Glu-1 genes of hexaploid wheat. Theor Appl Genet, 2001, 103: 733-742

[26] Shewry P R, Halford N G, Tatham A S. The high molecular weight subunits of wheat glutenin. J Cereal Sci, 1992, 15: 105-120

[27] Wu F(吴芳), Liu Y-H(刘英华), Liu L(刘琳), Deng G-B(邓光兵), Yu M-Q(余懋群), Chen X(陈孝). Genetic analysis of contribution of low-molecular-weight glutenin subunits to dough strength in common wheat. Hereditas (遗传), 2007, 29(11): 1399-1404 (in Chinese with English abstract)

[28] Kong L-R(孔令让), Dong Y-C(董玉琛). Advances on the genetic diversity of Aegilops tauschii (Cross) Schmal. J Shandong Agric Univ (山东农业大学学报), 1999, 29(4): 543-548 (in Chinese with English abstract)

[29] Kimber G, Zhao Y H. The D of the Triticeae. Can J Genet Cytol, 1983, 25: 581-589
[1] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[2] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[3] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[4] 刘会云,王婉晴,李欣,王轲,王龙,杜丽璞,晏月明,叶兴国. 小麦突变体AS208中Glu-B1位点缺失对籽粒中蛋白体形成和储藏蛋白合成与加工相关基因表达的影响[J]. 作物学报, 2017, 43(05): 691-700.
[5] 乔麟轶,李欣,畅志坚,张晓军,詹海仙,郭慧娟,李建波,常建忠,郑军. 粗山羊草全基因组Aux/IAA基因家族的分离、染色体定位及序列分析[J]. 作物学报, 2014, 40(12): 2059-2069.
[6] 张纪元,张平平,姚金保,杨丹,杨学明,马鸿翔. 以EMS诱变创制软质小麦宁麦9号高分子量谷蛋白亚基突变体[J]. 作物学报, 2014, 40(09): 1579-1584.
[7] 杨华,高翔,陈其皎,赵万春,董剑,李晓燕. 簇毛麦新型HMW-GS的序列分析及加工品质效应鉴定[J]. 作物学报, 2014, 40(04): 600-610.
[8] 徐鑫,李小军,张玲丽,李秀全,杨欣明,李立会. 小麦地方品种高分子量谷蛋白亚基多样性分析[J]. 作物学报, 2012, 38(07): 1205-1211.
[9] 李小军,胡铁柱,李淦,姜小苓,冯素伟,董娜,张自阳,茹振钢,黄勇. 小麦品种百农AK58及其姊妹系的遗传构成分析[J]. 作物学报, 2012, 38(03): 436-446.
[10] 曹丽, 王振林, 戴忠民, 尹燕枰, 翟学旭, 倪英丽, 蔡铁, 李勇, 王平, 陈二影, 郭俊祥, 陈晓光. 施氮时期对小麦籽粒HMW-GS积累及GMP粒度分布的影响[J]. 作物学报, 2011, 37(12): 2241-2250.
[11] 徐甜甜, 蔡剑, 汪波, 亓增军, 戴廷波, 曹卫星, 姜东. T6VS?6AL染色体易位与小麦籽粒HMW-GS和GMP积累的关系[J]. 作物学报, 2011, 37(11): 2059-2065.
[12] 王变银, 翟军, 郝元峰, 李安飞, 孔令让. 对人工合成小麦的微卫星变异分析[J]. 作物学报, 2011, 37(08): 1491-1496.
[13] 朱西平,李鑫,李雅轩,晏月明. 普通小麦及近缘粗山羊草α-醇溶蛋白基因的克降、定位与进化分析[J]. 作物学报, 2010, 36(4): 580-589.
[14] 刘新龙, 苏火生, 马丽, 陆鑫, 应雄美, 蔡青, 范源洪. 基于rDNA-ITS序列探讨甘蔗近缘属种的系统进化关系[J]. 作物学报, 2010, 36(11): 1853-1863.
[15] 倪英丽,王振林,李文阳,闫素辉,尹燕枰,李勇,王平,陈晓光. 磷肥对小麦籽粒HMW-GS积累及GMP粒度分布的影响[J]. 作物学报, 2010, 36(06): 1055-1060.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!