欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (06): 945-952.doi: 10.3724/SP.J.1006.2010.00945

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米干旱诱导表达基因ZmCKS2的克隆与表达分析

张中保1,卢敏1,李会勇1,2,张登峰1,刘颖慧1,3,石云素1,宋燕春1,王天宇1,*,黎裕1,*   

  1. 1中国农业科学院作物科学研究所,北京100081;2河南省农业科学院粮食作物研究所,河南郑州450002;3河北北方学院,河北张家口075000
  • 收稿日期:2010-01-29 修回日期:2010-03-04 出版日期:2010-06-12 网络出版日期:2010-04-14
  • 通讯作者: 王天宇, E-mail: wangtianyu@263.net; 黎裕, E-mail: yuli@mail.caas.net.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2006CB101700),国家高技术研究发展计划(863计划)项目(2006AA10Z188)和国家自然科学基金重点项目(30730063)资助。

Isolation and Expression Analysis of a Drought-Induced Gene “ZmCKS2” in Maize (Zea mays L.)

ZHANG Zhong-Bao1,LEI Min1,LI Hui-Yong1,2,ZHANG De-Feng1,LIU Ying-Hui1,3,SHI Yun-Su1, SONG Yan-Chun1,WANG Tian-Yu1,*,LI Yu1,*   

  1. 1Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China;2Cereal Crops Institute,Henan Academy of Agricultural Sciences,Zhengzhou 450002,China;3Hebei North University,Zhangjiakou 075000,China
  • Received:2010-01-29 Revised:2010-03-04 Published:2010-06-12 Published online:2010-04-14
  • Contact: WANG Tian-Yu, E-mail: wangtianyu@263.net;LI Yu, E-mail: yuli@mail.caas.net.cn

摘要:

在本实验室前期研究的干旱胁迫相关的抑制差减文库(SSH)中,发现一个玉米干旱胁迫诱导表达的EST序列,与拟南芥AtCKS2AtCKS1基因有较高的同源性。应用生物信息学手段和同源克隆的方法,分离得到该基因,命名为ZmCKS2。序列分析表明该基因开放阅读框区267 bp,编码88个氨基酸。ZmCKS2蛋白含有真核生物中高度保守的CKS (cyclin-dependent kinase regulatory subunit)结构域。应用在线分析软件预测该基因上游2 kb序列表明,该序列具有启动子的核心序列和增强子序列,同时还具有与干旱等多种逆境胁迫相关的调控序列。应用实时荧光定量PCR分析表明该基因在幼穗中表达量最高,且受干旱和MeJA诱导上调表达,受冷和外源ABA诱导下调表达。

关键词: ZmCKS2, 逆境胁迫, 表达模式, 启动子, 玉米

Abstract:

Plants respond to abiotic and biotic stresses through a number of biochemical and physiological reactions. Stresses inducible genes can be classified into two groups, i.e. functional genes that directly protect against stresses and regulator genes that regulate gene expression and signal transduction in the stress response. In our previous study, an EST from our drought related SSH library (suppression subtractive hybridization library) was obtained, which had a high similarity to AtCKS2in Arabidopsis. In the present study we cloned the cDNA homologous to CKS2, named ZmCKS2, by using in silico and homology-based cloning techniques. ZmCKS2 had an ORF of 267 bp and encoded 88 amino acids. The deduced protein of ZmCKS2 was predicted to contain a CKS (cyclin-dependent kinase regulatory subunit) structural domain, which was highly conserved in eukaryotes kingdom. The promoter of ZmCKS2 (about 2 kb upstream of ZmCKS2)was predicted to contain important regulatory elements including core promoter elements and drought, high salt, cold, ABA, light regulation, copper and oxygen responsive elements. Real-time quantitative PCR (qRT-PCR) analysis revealed that ZmCKS2 had different expression patterns in different organs. It was highly expressed in ears while its expression was very low in roots and leaves at seedling stage. qRT-PCR was also performed to investigate the expression profiles of the ZmCKS2 under different abiotic stresses such as drought, low temperature, high salt, MeJA (methyl jasmonate), and exogenous ABA (abscisic acid). Under drought or MeJA treatment, ZmCKS2 showed an up-regulated expression pattern. However, under cold or ABA treatment, the gene showed a down-regulation expression pattern. Under NaCl stress ZmCKS2 showed no obvious change. These results revealed that ZmCKS2 might be involved in multiple pathways of plants responding to different environmental conditions.

Key words: ZmCKS2, Abiotic stresses, Expression profiles, Promoter, Zea mays

[1]Huntley R P, Murray J A H. The plant cell cycle
[J].Curr Opin Plant Biol
[2]Dewitte W, Murray J A H. The plant cell cycle
[J].Annu Rev Plant Biol
[3]Reynard G J, Reynolds W, Verma R, Deshaies R J. Cksl is required for G1 cyclin-cyclin-dependent kinase activity in Budding Yeast
[J].Mol Cell Biol
[4]Martinsson-Ahlzén H, Liberal V, Grünenfelder B, Chaves S R, Spruck C H, Reed S I. Cyclin-dependent kinase-associated proteins cks1 and cks2 are essential during early embryogenesis and for cell cycle progression in somatic cells
[J].Mol Cell Biol
[5]De Veylder L, Segers G, Glab N, Casteels P, Van Montagu M, Inze D. The Arabidopsis Cks1At protein binds the cyclin-dependent kinases Cdc2aAt and Cdc2bAt
[J].FEBS Lett
[6]Jacqmard A, De Veylder L, Segers G, de Almeida Engler J, Bernier G, Montagu M V, Inze D. Expression of CKS1At in Arabidopsis thaliana indicates a role for the protein in both the mitotic and the endoreduplication cycle. Planta, 1999, 207: 496−504
[7]Vandepoele K, Raes J, De Veylder L, Rouzé P, Rombauts S, Inzé D. Genome-wide analysis of core cell cycle genes in Arabidopsis
[J].Plant Cell
[8]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402−408
[9]Li H-Y(李会勇), Huang S-H(黄素华), Zhao J-R(赵久然), Wang F-G(王凤格), Zhang Z-B(张中保), Mao Y -H(毛毅辉), Wang X-T(王秀堂), Shi Y-S(石云素), Song Y-C(宋燕春), Wang G-Y(王国英), Li Y(黎裕), Wang T-Y(王天宇). Isolating soil drought-induced genes from maize seedlings leaves through suppression subtractive hybridization. Sci Agric Sin (中国农业科学), 2007, 40(5): 882−888 (in Chinese with English abstract)
[10]Li Z-L(李智念), Wang G-M(王光明), Zeng Z-W(曾之文). The study on ABA in plant under drought stress. Agric Res in the Arid Areas (干旱地区农业研究), 2003, 21(2): 99−104 (in Chinese with English abstract)
[11]Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K. Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotech, 2003, 14: 194−199
[12]Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol, 2003, 6: 410−417
[13]Vandepoele K, Raes J, De Veylder L, Rouzé P, Rombauts S, Inzé D. Genome-wide analysis of core cell cycle genes in Arabidopsis
[J].Plant Cell
[14]Ditt R F, Kerr F K, de Figueiredo P, Delrow J, Coma L, Nester E W. The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens
[J].Mol Plant-Microbe Interact
[15]Guan Y, Nothnagel E A. Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures
[J].Plant Physiol
[16]Xie X-Z(谢先芝), Wu N-H(吴乃虎). Intron in high plant. Chin Sci Bull (科学通报), 2002, 47(17): 731−737 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[12] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[15] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!