欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (07): 1176-1182.doi: 10.3724/SP.J.1006.2010.01176

• 耕作栽培·生理生化 • 上一篇    下一篇

基于支持向量机非线性筛选水稻苗期抗旱性指标

袁哲明*,谭显胜   

  1. 湖南农业大学生物安全科学技术学院 / 湖南省作物种质创新与资源利用重点实验室,湖南长沙410128
  • 收稿日期:2009-12-31 修回日期:2010-04-16 出版日期:2010-07-12 网络出版日期:2010-05-20
  • 通讯作者: 袁哲明, E-mail: zhmyuan@sina.com
  • 基金资助:

    本研究由教育部新世纪优秀人才支持计划人才支持计划项目(NCET-06-0710),高等学校博士点基金项目(200805370002),湖南省教育厅青年基金项目(05B025)和湖南省研究生科研创新项目(CX2009B151)资助.

Nonlinear Screening Indexes of Drought Resistance at Rice Seedling Stage Based on Support Vector Machine

YUAN Zhe-Ming*, TAN Xian-Sheng   

  1. College of Bio-safety Science and Technology / Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China
  • Received:2009-12-31 Revised:2010-04-16 Published:2010-07-12 Published online:2010-05-20
  • Contact: YAN Zhi-Ming, E-mail: zhmyuan@sina.com

摘要:

作物抗旱性指标筛选具小样本、多指标和非线性等特点,传统的基于经验风险最小原则经线性筛选获得的综合指标及在此基础上建立的线性回归模型的合理性受到质疑;基于结构风险最小原则的支持向量机具适于小样本、非线性、泛化推广能力优异等诸多优点,但可解释性差。本文以15个水稻品种苗期反复干旱存活率为因变量,从24个形态生理指标中经支持向量回归(SVR)非线性筛选得苗高、脯氨酸、丙二醛、叶龄、心叶下倒一叶面积、抗坏血酸等6个综合指标,以此建立的SVR模型拟合精度与留一法预测精度均明显优于参比线性模型;如考虑指标测量的简易性,仅以地上部干重、心叶下倒二叶面积、根冠比、叶龄、叶鲜重、心叶下倒一叶面积等6个形态指标进行评估同样可行。为增强SVR的解释能力,基于F测验对SVR模型建立了非线性回归显著性与单因子重要性显著性的测验方法。

关键词: 水稻, 苗期, 抗旱性指标, 支持向量机, 非线性筛选

Abstract:

Screening indexes of drought resistance in crops is a puzzler with a few samples, multi-index and non-linear characteristics. Rationality of linear regression model and the indexes obtained by linear screening based on empirical risk minimization are debated. On the contrary, support vector machine based on structural risk minimization has the advantages of non-linear characteristics, fitting for a few samples, avoiding the over-fit, strong generalization ability and high prediction precision, etc. In this paper, setting the survival percentage under repeated drought condition as the target and support vector regression as the nonlinear screen tool, six integrated indicators including plant height, proline, malondialdehyde, leaf age, area of the first leaf under the central leaf and ascorbic acid, were highlighted from 24 morphological and physiological indicators in 15 paddy rice cultivars. The results showed that support vector regression model with the six integrated indicators had a more distinct improvementin fitting and prediction precision than the linear reference models. Considering the simplicity of indicators measurement, the support vector regression model with the only six morphological indicators including shoot dry weight, area of the second leaf under the central leaf, root shoot ratio, leaf age, leaf fresh weight and area of the first leaf under the central leaf was also feasible. Furthermore, an explanatory system including the significance of regression model and the importance of single indicator was established based on support vector regression and F-test.

Key words: Rice, Seedling stage, Drought resistance index, Support vector machine, Non-linear screening


[1]         Wang H-Z(王贺正), Li Y(李艳), Ma J(马均), Zhang R-P (张荣萍), Li X-Y(李旭毅), Wang R-Q(汪仁全). Screening indexes of drought resistance during seedling stage in rice. Acta Agron Sin (作物学报), 2007, 33(9): 1523–1529 (in Chinese with English abstract)

[2]         Hu R-H(胡荣海), Chang X-P(昌小平), Wang H(王环). The physiological base and utilization of repeated drought method. Acta Agric Boreali-Sin (华北农学报), 1996, 11(3): 51–56 (in Chinese with English abstract)

[3]         Wang H-W(王惠文), Wu Z-B(吴载斌), Meng J(孟洁). Partial Least-Squares Regression Linear and Nonlinear Methods(偏最小二乘回归的线性与非线性方法). Beijing: National Defense Industry Press, 2006. pp 34–54 (in Chinese)

[4]         Chakraborty K, Mehrotra K, Mohan C K, Ranka S. Forecasting the behavior of multivariate time series using neural networks. Neural Networks, 1992, 5: 961-970

[5]         Vapnik V N. The Nature of Statistical Learning Theory. New York: Springer-Verlag Press, 1995. pp 5–78

[6]         Liang Y C, Sun Y F. An improved method of support vector machine and its applications to financial time series forecasting. Prog Nat Sci, 2003, 13: 696-700

[7]         Tan X-S(谭显胜), Yuan Z-M(袁哲明), Zhou T-J(周铁军), Wang C-J(王春娟), Xiong J-Y(熊洁仪). Multi-KNN-SVR combinatorial forecast and its application to QSAR of fluorine-containing compounds. Chem J Chin Univ (高等学校化学学报), 2008, 29(1): 95–99 (in Chinese with English abstract)

[8]         Ma G L, Cheng Y Y. Predicting caco-2 permeability using support vector machine and chemistry development kit. Journal of Pharmacy & Pharmaceutical Sciences, 2006, 9: 210–221

[9]         Huang Z, Chen H, Hsu C J, Chen W H, Wu S S. Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision Support Systems, 2004, 37: 543–558

[10]      Anderson D C, Li W, Payan D G, Noble W S. A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra and SEQUEST scores. J Proteome Res, 2003, 2: 137–146

[11]      Deng N-Y(邓乃扬), Tian Y-J(田英杰). New Method in Data Mining–Support Vector Machine (数据挖掘中的新方法——支持向量机). Beijing: Science Press, 2004. pp 152–154 (in Chinese)

[12]      Chang C C, Lin C J. LIBSVM: a library for support vector machines. Taibei, Taiwan: National Taiwan University, 2001

[2009-02-27]. http://www. csie.ntu.edu.tw/~cjlin/libsvm

[13]      Chen Y(陈渊), Yuan Z-M(袁哲明), Zhou W(周玮), Xiong X-Y(熊兴耀). A novel QSAR model based on geostatistics and support vector regression. Acta Phys-Chim Sin (物理化学学报), 2009, 25(8): 1587–1592 (in Chinese with English abstract)

[14]      Yuan Z-M(袁哲明), Zhang Y-S(张永生), Xiong J-Y(熊洁仪). Multidimensional time series analysis based on support vector machine regression and its application in agriculture. Sci Agric Sin (中国农业科学), 2008, 41(8): 2485–2494 (in Chinese with English abstract)
Tang Q-Y(唐启义), Feng M-G(冯明光). DPS Data Processing System—Experimental Design, Statistical Analysis and Data Mining (DPS数据处理系统——实验设计、统计分析及数据挖掘). Beijing: Science Press, 2007. pp 628–629 (in Chinese)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!