欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (08): 1302-1309.doi: 10.3724/SP.J.1006.2010.01302

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米o16基因回交渗入o2系的分子标记辅助选择

张文龙1,2,4,杨文鹏2,3,*,陈志伟1,2,王明春2,杨留启2,蔡一林1   

  1. 1 西南大学农学与生物科技学院,重庆 400716;2 贵州省农业科学院旱粮研究所,贵州贵阳 5500063 贵州省农业科学院农业生物技术重点实验室,贵州贵阳 5500064 贵州省农业委员会种子管理站,贵州贵阳 550001
  • 收稿日期:2010-02-23 修回日期:2010-04-22 出版日期:2010-08-12 网络出版日期:2010-06-11
  • 基金资助:

    本研究由国家自然科学基金项目(30560079),贵州省优秀科技教育人才省长资金项目[黔省专合字(2005)264号]和国家重点基础研究发展计划(973计划)项目(2006CB708206)资助.

Molecular Marker-Assisted Selection for Corn o2 Introgression Lines with o16 Gene

ZHANG Wen-Long1,2,4,YANG Wen-Peng2,3,*,CHEN Zhi-Wei1,2,WANG Ming-Chun2,YANG Liu-Qi2,CAI Yi-Lin1   

  1. 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; 2 Guizhou Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; 3 Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; 4 Guizhou Seed Administration Station, Guizhou Agricultural Committee, Guiyang 550001, China
  • Received:2010-02-23 Revised:2010-04-22 Published:2010-08-12 Published online:2010-06-11

摘要: 在高赖氨酸玉米育种中,主要是以玉米opaque-2(o2)突变体作供体回交转育培育亲本材料,再行培育高赖氨酸杂交种。但是,迄今培育的o2玉米系及其杂交种的籽粒赖氨酸含量约为0.4%,不能满足食用和饲用的需求。为了提高o2玉米的赖氨酸含量,本研究利用一个新的高赖氨酸突变基因opaque-16(o16)的载体QCL3021作供体,o2玉米系太系19为受体,将o16基因回交渗入o2玉米系。在回交的每一世代及随后的自交世代,用o2基因内的SSR标记umc1066和o16基因的连锁SSR标记umc1141进行前景选择,再对中选单株进行全基因组SSR标记的背景选择,最后用染料结合赖氨酸法测定籽粒赖氨酸含量,以便保证筛选出遗传背景恢复率和赖氨酸含量均高的目标单株。在BC2F4代,获得携带o2o16基因的家系17个,其遗传背景与o2玉米系相当(恢复率为92%~95%),赖氨酸含量为0.469%~0.599%。其赖氨酸含量比普通玉米平均提高约122.63%;比高值亲本太系19(o2o2)平均提高约22.33%,增幅为6.11%~35.52%;比低值亲本QCL3021(o16o16)平均提高约65.86%,增幅为43.87%~83.74%。表明采用标记辅助选择技术将o16基因回交导入o2玉米,能有效提高玉米籽粒的赖氨酸含量,对高赖氨酸玉米的遗传改良和育种具有重要意义。

关键词: 分子标记辅助选择, 回交, 高赖氨酸突变体, o16, o2, 玉米

Abstract: The opaque-2 (o2) mutant is commonly used as a donor to breed high lysine corn. But the highest lysine content of the o2 line as well as the resultant hybrids is about 0.4%. So, it is necessary to increase lysine content for the staple food consumed by human and animals. QCL3021 line carrying opaque-16 (o16) gene is another high lysine mutant. This study was performed to transfer o16 gene into o2 line through hybridization between QCL3021 (donor) and o2 line Taixi 19 (receiver) followed by multiple backcrossing. The foreground selection was performed using simple sequence repeats (SSR) marker umc1066 for o2 gene and umc1141 for o16 gene in every backcrossing and subsequent inbred generation. Selected plants were then screened for recovery of genetic background using SSR markers covering the whole genome. Grain lysine content was determined by dye-binding lysine (DBL) method. Plants with high lysine content and higher genetic background recovery ratio were eventually chosen. In BC2F4 generation, 17 family lines which carry both o2 and o16 genes were identified, with the genetic background recovery ratio of 92%–95%, indicating that the genome of these lines was highly identical with o2 corn line. Lysine content of the selected plants was 0.469%–0.599%, which was an average increase of 122.63% for normal corn,22.33% for the high parent line Taixi 19, and 65.86% for the low parent line QCL3021. This study demonstrated that molecular marker-assisted selection (MAS) for corn o2 introgression lines that were infiltrated with o16 gene was successful in improving grain lysine content. The established procedure can be applied in high lysine corn breeding and genetic improvement.

Key words: Molecular marker-assisted selection, Bakcross, High-lysine mutant, o16, o2, Corn

[1]Mertz E T, Bates L S, Nelson O E. Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science, 1964, 145: 279-280
[2]Mains E B. Heritable characters in maize: linkage of a factor for shrunken endosperm with the a1 factor for aleurone color. J Hered, 1949, 40: 21-24
[3]Teas H J, Teas A N. Heritable characters in maize: Description and linkage of brittle endosperm-2. J Hered, 1953, 44: 156-158
[4]Richardson D L. Shrunken-floury, a gene affecting protein synthesis. Maize Genet Coop Newsl, 1955, 29: 45
[5]McWhirter K S. A floury endosperm, high lysine locus on chromosome 10. Maize Genet Coop Newsl, 1971, 45: 184
[6]Soave C, Viotti A, Di Fonzo N, Salamini F. Recent evidence concerning the genetic regulation of zein synthesis. In: Leaver C J ed. Genome Organization and Expression in Plants. New York: Plenum press, 1979. pp 219-226
[7]Soave C, Tardani L, Di Fonzo N, Salamini F. Zein level in maize endosperm depends on a protein under control of the opaque-2 and opaque-6 loci. Cell, 1981, 27: 403-410
[8]Nelson O E Jr. More precise linkage data on fl3. Maize Genet Coop Newsl, 1979, 53: 56
[9]Nelson O E Jr. The mutations opaque-9 through opaque-13. Maize Genet Coop Newsl, 1981, 55: 68
[10]Salamini F, Di Fonzo N, Fornasari E, Gentinettta E, Reggiani R, Soave C. Mucronate, Mc, a dominant gene of maize which interacts with opaque-2 to suppress zein synthesis
[J].Theor Appl Genet
[11]Motto M, Di Fonzo N, Hartings H, Maddaloni M, Salamini F, Soave C, Thompson R D. Regulatory genes affecting maize storage protein synthesis. Oxf Surv Plant Mol Cell Biol, 1989, 6: 87-114
[12]Paulis J, Bietz J A, Bogyo T P, Darrah L, Zuber M S. Expression of alcohol-soluble endosperm proteins in maize single and double mutants
[J].Theor Appl Genet
[13]Yang W P, Zheng Y L, Zheng W T, Feng R. Molecular genetic mapping of a high-lysine mutant gene (opaque-16) and the double recessive effect with opaque-2 in maize
[J].Mol Breed
[14]Zhai F-L(翟风林). Breeding for Crop Quality (作物品质育种). Beijing: Agriculture Press, 1991. pp 3-19 (in Chinese)
[15]Tian Q-Z(田清震), Li X-H(李新海), Li M-S(李明顺), Jiang W(姜伟), Zhang S-H(张世煌). Molecular markers assisted selection to quality protein maize. J Maize Sci (玉米科学), 2004, 12 (2): 108-110 (in Chinese with English abstract)
[16]Yang W P, Zheng Y L, Wu J. Heterofertilization of the opaque-2 endosperm in maize
[J].Hereditas
[17]Yang W-P(杨文鹏). Molecular Mapping of a High-Lysine Mutant Gene and Analyses of Heterofertilization of o2 Endosperm and Allelic Variation at o2 Locus in Maize. PhD Dissertation of Huazhong Agricultural University, 2005 (in Chinese with English abstract)
[18]Yang W P, Zheng Y L, Ni S, Wu J. Recessive allelic variations of three microsatellite sites within the o2 gene in maize
[J].Plant Mol Biol Rep
[19]Hospital F, Chevalet C, Mulsant P. Using markers in gene introgression breeding programs. Genetics, 1992, 132: 199-210
[20]Xia J-H(夏军红), Zheng Y-L(郑用琏). Molecular marker-assisted backcross breeding of maize Rf3 NIL and its efficient analysis. Acta Agron Sin (作物学报), 2002, 28(3): 339-344 (in Chinese with English abstract)
[21]Fang M-J(方明镜), Ding D(丁冬), Yang W-P(杨文鹏), Xu S-Z(徐尚忠), Zheng Y-L(郑用琏). The linkage drag analysis of flanked opaque2 by SSR marker in two maize BC1F1 population. Acta Agron Sin (作物学报), 2005, 31(10): 1359-1364 (in Chinese with English abstract)
[22]Duan H-M(段红梅), Wang W-X(王文秀), Chang R-Z(常汝镇), Zhang M-C(张孟臣), Qiu L-J(邱丽娟). Efficient selection of genetic background using SSR markers in soybean. J Plant Genet Resour (植物遗传资源学报), 2003, 4(1): 36-42 (in Chinese with English abstract)
[23]Liu Z-W(刘志文), Wang Y(王英), Liu X-P(刘雪平), Fu T-D(傅廷栋), Xue Y-C(薛永常), Tu J-X(涂金星), Ma C-Z(马朝芝). The effects analysis of molecular marker-assisted selection in yellow- seeded Brassica napus. Acta Agric Boreali-Sin (华北农学报), 2006, 21(2): 57-61 (in Chinese with English abstract)
[24]Xu J-L(徐建龙), Lin Y-Z(林贻滋), Weng J-P(翁锦屏), Zhao X-L (赵新立). Convergence of resistance genes to bacterial blight in rice and its genetic effect. Acta Agron Sin (作物学报), 1996, 22(2): 129-134 (in Chinese with English abstract)
[25]He G-M(何光明), Sun C-Q(孙传清), Fu Y-C(付永彩), Fu Q(付强), Zhao K-J(赵开军), Wang C-L(王春连), Zhang Q(章琦), Ling Z-Z(凌忠专), Wang X-K(王象坤). Pyramiding of senescence-inhibition IPT gene and Xa23 for resistance to bacterial blight in rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2004, 31(8): 836-841 (in Chinese with English abstract)
[26]Deng Q-M(邓其明), Zhou Y-J(周宇爝), Jiang Z-X(蒋昭雪), Wan Y-X(万映秀), Zhao B(赵斌), Yang L(杨莉), Li P(李平). Pyramiding bacterial blight (BB) resistance genes (Xa21, Xa4 and Xa23) into rice and its effect analysis. Acta Agron Sin (作物学报), 2005, 31(9): 1241-1246 (in Chinese with English abstract)
[27]Zhang J, Li X, Jiang G, Xu Y, He Y. Pyramiding of Xa7 and Xa21 for the improvement of disease resistance to bacterial blight in hybrid rice
[J].Plant Breed
[28]Liu W-G(柳武革), Wang F(王丰), Jin S-J(金素娟), Zhu X-Y(朱小源), Li J-H(李金华), Liu Z-R(刘振荣), Liao Y-L(廖亦龙), Zhu M-S(朱满山), Huang H-J(黄慧君), Fu F-H(符福鸿), Liu Y-B(刘宜柏). Improvement of rice blast resistance in TGMS line by pyramiding of Pi-1 and Pi-2 through molecular marker-assisted selection
[J].Acta Agron Sin (作物学报.2008, 34(7):1128-1136
[29]Zeng X-Y(曾祥艳), Zhang Z-Y(张增艳), Du L-P(杜丽璞), Xin Z-Y(辛志勇), Chen X(陈孝). Development of wheat germplasms with multi-resistance to powdery mildew, stripe rust and yellow dwarf virus by molecular marker-assisted selection. Sci Agric Sin (中国农业科学), 2005, 38(12): 2380-2386 (in Chinese with English abstract)
[30]Jefferies S P, King B J, Barr A R, Warner P, Logue S J, Langridge P. Marker-assisted backcross introgression of the Yd2 gene conferring resistance to barley yellow dwarf virus in barley
[J].Plant Breed
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!