作物学报 ›› 2010, Vol. 36 ›› Issue (08): 1362-1370.doi: 10.3724/SP.J.1006.2010.01362
张绪成1,2,张福锁2,于显枫1,陈新平2
ZHANG Xu-Cheng1,2, ZHANG Fu-Suo2, YU Xian-Feng1, and CHEN Xin-Ping2
摘要: 为探讨高大气CO2浓度下植物光合作用适应现象的光合能量转化和分配的氮素响应及其对C3植物光合功能的影响,本试验对盆栽小麦进行2个大气CO2浓度和2个氮水平的组合处理,通过测定小麦光合气体交换参数、叶绿素荧光参数和叶绿素含量等指标,研究施氮对高大气CO2浓度下小麦叶片光合功能的影响。结果表明,大气CO2浓度升高后,低氮处理小麦叶片光合速率发生明显的适应性下调,光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)下降;但高氮叶片则无明显的光合作用适应现象发生。高大气CO2浓度下低氮叶片光化学速率、PSII线性电子传递速率(JF)、光合电子流的光化学传递速率(JC)、Rubisco羧化速率(VC)和TPU下降,并随生育时期推进其下降趋势更为明显,但高氮叶片的上述参数无显著变化;小麦叶片JC/JF、VC/JC和V0 /VC随氮素水平和大气CO2浓度的变化无显著变化,表明施氮能提高光合机构对光合能量的传递速率,但对光合能量的分配方向无明显影响。施氮提高小麦叶片氮素和叶绿素含量,并且使高大气CO2浓度下光合氮素利用效率(NUE)明显增加。大气CO2浓度升高后,施氮增强光合机构的光合能量运转速率,同化力提高,无明显的光合作用适应现象;由于氮素水平与大气CO2浓度对小麦叶片的光合能量利用存在明显的交互作用,而且高大气CO2浓度下施氮使得小麦叶片NUE增加、正常大气CO2浓度下降低,证明高大气CO2浓度下施氮对光合作用具有直接的影响。
[1]Stitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background [J].Plant, Cell & Environ, Cell' target='_blank'> [2]Isopp H, Frehner M, Long S P, Nösberger J. Sucrose-phosphate synthase responds differently to source-sink relations and to photosynthetic rates: Lolium perenne L [J].growing at elevated pCO2 in the field. Plant, Cell & Environ2 in the field. Plant, Cell' target='_blank'> [3]Rogers A, Fischer B U, Bryant J, Frehner M, Blum H, Raines C A, Long S P. Acclimation of photosynthesis to elevated CO2 under low nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-air CO2 enrichment. Plant Physiol, 1998, 118: 683-689 [4]Rogers A, Ellsworth D S. Photosynthetic acclimation of Pinus taeda (loblolly pine) to long-term growth in elevated pCO2 (FACE) [J]. Plant, Cell & Environ, Cell' target='_blank'> [5]Ainsworth E A, Long S P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol, 2005, 165: 351-372 [6]Liao Y(廖轶), Chen G-Y(陈根云), Zhang D-Y(张道允), Xiao Y-Z(肖元珍), Zhu J-G(朱建国), Xu D-Q(许大全). Non-stomatal acclimation of leaf photosynthesis to free-air CO2 enrichment (FACE) in winter wheat. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2003, 29(6): 479-486 (in Chinese with English abstract) [7]Xu K(徐凯), Guo Y-P(郭延平), Zhang S-L(张上隆), Dai W-S (戴文圣), Fu Q-G(符庆功). Photosynthetic acclimation to elevated CO2 in strawberry leaves grown at different levels of nitrogen nutrition. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2006, 32(4): 473-480 (in Chinese with English abstract) [8]Saxe H, Ellsworth D S, Heath J. Tree and forest functioning in an enriched CO2 atmosphere [J].New Phytol [9]Bloom A J, Smart D R, Nguyen D T, Searles P S. Nitrogen assimilation and growth of wheat under elevated carbon dioxide [J]. Proc Nati Acad Sci USA [10]Reich P B, Hobbie S E, Lee T, Ellsworth D S, West J B, Tilman D, Knops J M, Naeem S, Trost J. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature, 2006, 440: 708-922 [11]Yusuke O, Tadaki H, Kouki H. Effect of elevated CO2 levels on leaf starch, nitrogen and photosynthesis of plants growing at three natural CO2 springs in Japan [J].Ecol Res [12]Lin Z-F(林植芳), Peng C-L(彭长连), Sun Z-J(孙梓健). The effects of light intensity on the photorespiratory allocation of photosynthetic electron transports of four subtroical forest plants. Sci China (Ser C) (中国科学?C辑), 2000, 30(1): 72-77 (in Chinese) [13]Arnon D. Copper enzymes in chloroplast. Polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1-25 [14]Hartmut K L, Alan R W. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soci Trans, 1986, 11: 591-592 [15]Haake V, Geiger M, Walch-Liu P, Engels C, Zrenner R, Stitt M. Changes in aldolase activity in wild-type potato plants are important for acclimation to growth h-radiance and carbon dioxide concentration, because plastid aldolase exerts control over the ambient rate of photosynthesis across a range of growth conditions [J].Plant J [16]Krall J P, Edward G E. Relationship between photosystem II activity and CO2 fixation in leaves [J]. Plant Physiol [17]Epron D, Godard D, Cornic G, Genty B. Limitation of net CO2 assimilation rate by internal resistance to CO2 transfer in the leaves of two tree species (Fagus sylvation L [J].and Castanea sativa Mill). Plant, Cell & EnvironCastanea sativa Mill). Plant, Cell' target='_blank'> [18]Sharkey T D, Bernacchi C J, Farguhar G D. Fitting photosynthetic carbon dioxide response curves for C3 leaves [J].Plant Cell Environ [19]Di M, Iannell M A, Loreto F. Relationship between photosynthetic and photorespiration in field-grown wheat leaves. Photosynthetica, 1994, 30: 45-51 [20]Zhang S R, Dang Q L. Effects of carbon dioxide concentration and nutrition on photosynthetic functions of white birch seedlings. Tree Physiol, 2006, 26: 1457-1467 [21]Li F-S(李伏生), Kang S-Z(康绍忠). Effects of CO2 concentration and nitrogen level on water use efficiency in spring wheat. Acta Agron Sin (作物学报), 2002, 28(6): 835-840 (in Chinese with English abstract) [22]Beerling D J, Chaloner W G. Stomatal density responses of Egyptian Olea europaea L. leaves to CO2 change since 1327 BC. Ann Bot, 1993, 71: 431-435 [23]Hunsaker D J, Kimball B A, Pinter P J, Wall G W, LaMorteR L, Adamsen F J, Leavitt S W, Thompson T L, Matthias A D, Brook T J. CO2 enrichment and soil nitrogen effects on wheat evapo- transpiration and water use efficiency [J].Agric For Meteorol [24]Zhang X-C(张绪成), Shang-Guan Z-P(上官周平). The responses of photosynthetic electron transport and partition in the winter wheat leaves of different drought resistances to nitrogen levels. Plant Physiol Commun (植物生理学通讯), 2009, 45(1): 13-18 (in Chinese) |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[4] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[5] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[6] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[7] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[8] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
[9] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[10] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[11] | 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422. |
[12] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[13] | 谢呈辉, 马海曌, 许宏伟, 徐郗阳, 阮国兵, 郭峥岩, 宁永培, 冯永忠, 杨改河, 任广鑫. 施氮量对宁夏引黄灌区麦后复种糜子生长、产量及氮素利用的影响[J]. 作物学报, 2022, 48(2): 463-477. |
[14] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[15] | 付正豪, 马中涛, 魏海燕, 邢志鹏, 刘国栋, 胡群, 张洪程. 不同机械化栽培方式下控释肥配比对迟熟中粳水稻产量形成及氮素吸收利用的影响[J]. 作物学报, 2022, 48(1): 165-179. |
|