欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (2): 276-284.doi: 10.3724/SP.J.1006.2010.00276

• 耕作栽培·生理生化 • 上一篇    下一篇

不同水稻品种支链淀粉结构的差异及其与淀粉理化特性的关系

贺晓鹏1,朱昌兰1,*,刘玲珑2,王方1,**,傅军如1,江玲2,张文伟2,刘宜柏1,万建民2,*   

  1. HE Xiao-Peng1,ZHU Chang-Lan1,*,LIU Ling-Long2,WANG Fang1,FU Jun-Ru1,JIANG Ling2,ZHANG Wen-Wei2,LIU Yi-Bai1,WAN Jian-Min2,*
  • 收稿日期:2009-11-04 修回日期:2009-11-17 出版日期:2010-02-10 网络出版日期:2009-12-21
  • 通讯作者: 万建民, E-mail: wanjm@njau.edu.cn; Tel: 025-84396516; 朱昌兰, E-mail: zhuchanglan@163.com
  • 基金资助:

    本研究由国家自然科学基金项目(30560074)和江西省主要学科学术和技术带头人培养计划(2008DD00800)资助。

Difference of Amylopectin Structure among Various Rice Genotypes Differing in Grain Qualities and Its Relation to Starch Physicochemical Properties

1江西农业大学作物生理生态与遗传育种教育部重点实验室 / 农业部双季稻生理生态与栽培重点开放实验室,江西南昌330045;2 南京农业大学作物遗传与种质创新国家重点实验室,江苏南京210095
  

  1. 1 Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University / Key Laboratory of Crop Physiology, Ecology and Cultivation of Double Cropping Rice, Ministry of Agriculture, Nanchang 330045, China; 2 State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2009-11-04 Revised:2009-11-17 Published:2010-02-10 Published online:2009-12-21
  • Contact: WAN Jian-Min,E-mail:wanjm@njau.edu.cn;Tel:025-84396516;ZHU Chang-Lan,E-mail: zhuchanglan@163.com

摘要:

利用改进的基于DNA测序仪的荧光糖电泳法对我国不同品质类型水稻品种和部分外引水稻品种的支链淀粉链长分布特征进行了测定,在尽量排除直链淀粉含量(amylose content, AC)对淀粉理化特性影响的基础上,分析了支链淀粉结构与稻米淀粉理化特性的相关性。结果表明,根据åDP≤11/åDP≤24的链长比值,可将50个供试品种的支链淀粉分为I型和II型两种结构类型,I型支链淀粉的链长比值小于0.22,II型支链淀粉的链长比值大于0.26。15个粳稻品种的支链淀粉结构属II型,35个籼稻品种中有15个品种的支链淀粉结构属I型,20个品种属II型。相关分析结果表明,åDP6~11和链长比值与起始成糊温度(pasting temperature, PT)和相对结晶度 (relative crystallinity, RC)呈极显著负相关;åDP28~34与PT呈极显著负相关,与RC的相关性不显著;åDP13~24和åDP39~49与PT呈极显著正相关,与RC呈显著正相关。在糯稻、低AC和高AC品种中,åDP6~11、åDP13~24和链长比值与PT的相关性与在全部品种中的相关性一致,与RC的相关性也与全部品种中的相关性基本一致。åDP28~34与PT在低AC品种中,åDP39~49与PT在糯稻和高AC品种中、与RC在高AC品种中的相关性也与全部品种中的相关性具有一致性。不同链长范围的支链数量比例与GC (gel consistency)和RVA谱特征值的相关性基本不显著。可见支链淀粉不同链长范围的支链数量比例主要与淀粉的PT和RC相关,而与淀粉的GC和RVA谱特征值关系不密切。

关键词: 水稻, 支链淀粉, 链长分布, 相对结晶度, 起始成糊温度, RVA谱特证值

Abstract:

As the main constituents of rice starch, rice amylopectin and its structure is one of major determinants for the development of starch granule structures and starch physicochemical properties. Understanding amylopectin chain length distribution properties in different rice varieties, and clarifying the correlations between the amylopectin structure and rice starch physicochemical properties, may provide theoretical basis for revealing the mechanism of rice quality development and guide rice quality improvement. In this study, the amylopectin structure of some rice varieties in China and some introduced rice varieties with different qualities were characterized by improved fluorophore-assisted carbohydrate electrophoresis (FACE) method based on DNA sequencer. On the basis of eliminating the impact of amylose content (AC), the correlations between amylopectin structure and rice starch physical chemistry properties were analyzed. The results indicated that rice amylopectin structure in 50 varieties could be classified into I-type and II-type, according to the amylopectin chain ratio of åDP£11/åDP£24. The amylopectin chain ratio of the I-type amylopectin is less than 0.22, whereas the II-type is higher than 0.26. All the 15 japonica varieties’ amylopectin belonged to II-type. Among the 35 indica varieties, for amylopectin structure, 15 belonged to I-type and 20 belonged to II-type. The SDP6-11 and amylopectin chain ratio had very significantly negative correlations (P<0.01) with pasting temperature (PT) and relative crystallinity (RC). The åDP28-34 had very significantly negative correlations with PT, but did not have significantly correlations with RC. The åDP13-24 and åDP39-49 had very significantly positive correlations with PT and significantly positive correlations (P<0.05) with RC. In glutinous rice, low AC and high AC varieties, the correlations of SDP6-11, åDP28-34, amylopectin chain ratio with PT and RC were essentially consistent with these in all varieties. The correlations between åDP28-34 and PT in low AC, between åDP39-49 and PT in glutinous rice and high AC varieties, between åDP39-49 and RC in high AC varieties were consistent with these in all varieties. The proportion of chain amounts in amylopectin with different chain length ranges was not significantly correlated with GC and RVA profile properties. Therefore, the proportion of chain amounts in amylopectin with different chain length ranges has relation to rice starch PT and RC, but not close relation to GC and RVA profile characteristics in most cases. The short chain amounts of DP6-11 have a function of decreasing rice starch PT and RC, the medium chain amounts of DP13-24 have a function of increasing rice starch PT and RC, the relatively long chain amounts of DP 28-34 have a function of decreasing rice starch PT and the long chain amounts of DP 39-49 have a function of increasing rice starch PT and RC.

Key words: Rice, Amylopetin, Chain length distribution, Relative crystallinity, Pasting temperature, RVA profile properties


[1]    
Nakamura Y. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: Rice endosperm as a model tissue. Plant Cell Physiol, 2002, 43: 718–725


[2]    
Han X Z, Hamaker B R. Amylopectin fine structure and rice starch paste breakdown. J Cereal Sci, 2001, 34: 279–284


[3]    
Cai Y-X(蔡一霞), Wang W(王维), Zhu Z-W(朱智伟), Zhang Z-J(张祖建), Yang J-C(杨建昌), Zhu Q-S(朱庆森). The physiochemical characteristics of amylopectin and their relationships to pasting properties of rice flour in different varieties. Sci Agric Sin (中国农业科学), 2006, 39(6): 1122–1129 (in Chinese with English abstract)


[4]    
Nakamura Y, Sakurai A, Inaba Y, Kimura K, Iwasawa N, Nagamine T. The fine structure of amylopectin in endosperm from Asian cultivated rice can be largely classified into two classes. Starch/Stärke, 2002, 54: 117–131


[5]    
Vandeputte G E, Vermeylen R, Geeroms J, Delcour J A. Rice starches. I. Structural aspects provide insight into provide insight into swelling and pasting properties. J Cereal Sci, 2003, 38: 43–52


[6]    
Vandeputte G E, Derycke V, Geeroms J, Delcour J A. Rice starches: II. Structural aspects provide insight into swelling and pasting properties. J Cereal Sci, 2003, 38: 53–59


[7]    
Vandeputte G E, Vermeylen R, Geeroms J, Delcour J A. Rice starches: III. Structural aspects provide insight in amylopectin retrogradation properties and gel texture. J Cereal Sci, 2003, 38: 61–68


[8]    
Zhu C-L(朱昌兰), Shen W-B(沈文飚), Zhai H-Q(翟虎渠), Wan J-M(万建民). Advances in researches of the application of low-amylose content rice gene for breeding. Sci Agric Sin (中国农业科学), 2004, 37(2): 157–162 (in Chinese with English abstract)


[9]    
Zhong L-J(钟连进), Cheng F-M(程方民), Zhang G-P(张国平), Sun Z-X(孙宗修). Differences in starch chain length distribution and structure characteristics of early-indica rice under different temperature treatments during grain-filling. Sci Agric Sin (中国农业科学), 2005, 38(2): 272–276 (in Chinese with English abstract)


[10] 
O’Shea M G, Morell M K. High resolution slab gel electrophoresis of 8-amino-1,3,6-pyrenetrisulfonic acid (APTS) tagged oligosaccharides using a DNA sequencer. Electrophoresis, 1996, 17: 681–688


[11] 
O’Shea M G, Samuel M S, Konik C M, Morell M K. Fluorophore-assisted carbohydrate electrophoresis (FACE) of oligosaccharides: efficiency of labeling and high-resolution separation. Carbohydr Res, 1998, 307: 1–12


[12] 
Yao Y, Guiltinan M J, Thompson D B. High-performance size-exclusion chromatography (HPSEC) and fluorophore-assisted carbohydrate electrophoresis (FACE) to describe the chain-length distribution of debranched starch. Carbohydr Res, 2005, 340: 701–710


[13] 
Fujita S, Yamamoto H, Sugimoto Y, Morita N, Yamamori M. Thermal and crystalline properties of waxy wheat (Triticum aestivum L.) starch. J Cereal Sci, 1998, 27: 1–5


[14] 
Cheetham N W H, Tao L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydrate Polymers, 1998, 36: 277–284


[15] 
Zhang B-S(张本山), Zhang Y-Q(张友全), Yang L-S(杨连生), Yu S-J(于淑娟). A method of determining crystallinity of starch in multi-crystal system. J South China Univ Technol (Nat Sci Edn)(华南理工大学学报·自然科学版), 2001, 29(5): 55–58 (in Chinese with English abstract)


[16] 
American Association of Cereal Chemists. Approved methods for the AACC, 10th edn. Method 61-01 (amylograph method for milled rice) and Method 61-02 (determination of the pasting properties of rice with rapid visco analyzer). The Association, St. Paul, 2000


[17] 
Wan X-Y(万向元), Chen L-M(陈亮明), Wang H-L(王海莲), Xiao Y-H(肖应辉), Bi J-C(毕京翠), Liu X(刘喜), Zhai H-Q(翟虎渠), Wan J-M(万建民). Stability analysis for the RVA profile properties of rice starch. Acta Agron Sin (作物学报), 2004, 30(12): 1185–1191 (in Chinese with English abstract)


[18] 
Bao J S, Xia Y W. Genetic control of the paste viscosity characteristics in indica rice (Oryza sativa L.). Theor Appl Genet, 1999, 98: 1120–1124


[19] 
Umemoto T, Nakamura Y, Satoh H, Terashima K. Differences in amylopectin structure between two rice varieties in relation to the effects of temperature during grain-filling. Starch/Stärke, 1999, 51: 58–62


[20] 
Umemoto T, Yano M, Shomura A, Nakamura Y. Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theor Appl Genet, 2002, 104: 1–8


[21] 
Nakamura Y, Francisco P B Jr, Hosaka Y, Sato A, Sawada T, Kubo A, Fujita N. Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Mol Biol, 2005, 58: 213–227


[22] 
Vandeputte G E, Delcour J A. From sucrose to starch granule to starch physical behaviour: a focus on rice starch. Carbohydrate Polymers, 2004, 58: 245–266


[23] 
Gidley M J, Bulpin P V. Crystallisation of maltooligosaccharides as models of the crystalline forms of starch: minimum chain length requirement for the formation of double helices. Carbohydr Res, 1987, 161: 291–300


[24] 
Jane J, Chen Y Y, Lee L F, Mc Pherson A E, Wong K S, Radosavljevic M, Kasemsuwan T. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chemistry, 1999, 76: 629–637


[25] 
Yao Y, Thompson D P, Guiltinan M J. Maize starch-branching enzyme isoforms and amylopectin structure. In the absence of starch-branching enzyme IIb, the further absence of starch-branching enzyme Ia leads to increased branching. Plant Physiol, 2004, 136: 3515–3523


[26] 
Patindol J, Wang Y J. Fine structures of starches from long grain cultivars with different functionality. Cereal Chemistry, 2002, 79: 465–469


[27] 
Hizukuri S. Polymodal distribution of chain lengths of amylopectins, and its significance. Carbohydr Res, 1986, 147: 342–347


[28] 
Liu Y-B(刘宜柏), Huang Y-J(黄英金). The study on the relativity of flavor quality of rice. Acta Agric Univ Jiangxiensis (江西农业大学学报), 1989, 11(4): 1–5 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!